
Command Line

Interface Guide

Version 4.1
June 2000

� � � � � � � � � � � �

E T N U S

Copyright © 1999–2000 by Etnus LLC. All rights reserved
Copyright © 1998–1999 by Etnus Inc. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise
without the prior written permission of Etnus LLC (Etnus).

Use, duplication, or disclosure by the Government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013.

Etnus has prepared this manual for the exclusive use of its customers, personnel, and licens-
ees. The information in this manual is subject to change without notice, and should not be
construed as a commitment by Etnus. Etnus assumes no responsibility for any errors that
appear in this document.

TotalView and Etnus are registered trademarks of Etnus LLC. TimeScan and Gist are trade-
marks of Etnus LLC.

All other brand names are the trademarks of their respective holders.

Contents
1 TotalView Command Line Interpreter
What Is the CLI .. 1
Document Contents .. 2
Conventions .. 4
Reporting Problems ... 4

2 A Few CLI/Tcl Macros
Setting the EXECUTABLE_PATH State Variable 5
Print an Array Slice .. 6
Setting Breakpoints ... 8

3 Using the CLI
How a Debugger Operates .. 11

Tcl and the CLI .. 12
The CLI and TotalView .. 12
The CLI Interface ... 13

Starting the CLI ... 14
Debugger Initialization .. 15
Executing a Start-Up File .. 15
Starting Your Program ... 17

CLI Output ... 19
“more” Processing .. 20

Built-In Aliases and Group Aliases .. 21
Command Arguments ... 22
Symbols ... 22

Symbol Names and Scope.. 23
Qualifying Symbol Names ... 24

Effects of Parallelism on TotalView and CLI Behavior 25
Groups .. 26
Version 4.1 Command Line Interface Guide iii

i

Contents

i

Process/Thread Sets and Arenas ...27
Specifying Processes and Threads ..28
Incomplete Arena Specifiers ...30
Lists With Inconsistent Widths ..31
Kinds of IDs ...31

Command and Prompt Formats ..32
Controlling Program Execution ...33

Advancing Program Execution ..33
Action Points ...35

Stepping ..35

4 CLI Commands
Command Overview ..37
alias.. 40
capture... 42
dactions ... 43
dassign... 45
dattach .. 47
dbreak.. 50
dcont ... 53
ddelete... 55
ddetach.. 56
ddisable ... 57
ddown.. 58
denable .. 60
dfocus .. 61
dgo... 63
dhalt... 64
dkill .. 65
dlist .. 66
dload.. 70
dnext.. 72
dnexti ... 73
dprint ... 74
drerun .. 77
drun ... 78
dset.. 80
dstatus ... 85
dstep.. 86
dstepi... 88
v Cli Guidev Command Line Interface Guide version 4.1

Contents
dunset ... 89
dup .. 90
dwait.. 92
dwatch... 93
dwhat... 96
dwhere... 99
exit... 101
help ... 102
quit .. 103
stty .. 104
unalias ... 105

A CLI Command Summary.. 107

B CLI Command Aliases and Focus ... 113

Glossary... 117

Index... 129
Version 4.1 Command Line Interface Guide v

v

Contents

v
i Cli Guidei Command Line Interface Guide version 4.1

Version 4.1
Chapter 1
TotalView Command Line Interpreter
This document describes the TotalView® Command Line Interpreter (CLI). The CLI
is a command-oriented debugger that can be used as a stand-alone product or it
can be used along with the TotalView Graphical User Interface (GUI) debugger.
Depending upon your needs, you can view the CLI and TotalView debuggers as
either being independent or complementary products. In most cases, the easiest
way to debug programs is by using the TotalView GUI. However, there are circum-
stances when you need to do something not possible or practical using a GUI. For
example, you may not want to interactively debug a program that takes days to
execute.

The CLI debugger commands that you will execute are integrated within a Tcl
interpreter. This combination removes the CLI from the realm of purely com-
mand-line debuggers in that you can add your own debugging commands, auto-
mate repetitive tasks, and even have the CLI run your program to a point where
you are ready to begin debugging using the GUI. For example, you could ask the
CLI to watch a memory location for changes and stop the program when a
change occurs.

What Is the CLI
The CLI and TotalView are tools that give you visibility into, and control over,
executable programs. An executable program has three basic components:
the program’s source files, its executables, and shared libraries. As the exe-
cutable is running, it will also be using the stack and the heap.

The programs you will debug using the CLI are related to all three of these,
but the component that is most often the target of CLI operations is either
Command Line Interface Guide 1

1
TotalView Command Line Interpreter

Document Contents
an executing user program or a user program that you have loaded into
memory.

The executing program has one or more processes, each associated with an
executable (and perhaps one or more shared libraries) and each occupying a
memory address space. Every process, in turn, has one or more threads, each
with its own set of registers and its own stack.

The program being debugged is the complete set of threads and communi-
cating processes that make up an application. The exact number of pro-
cesses and threads depends on many factors, including how you wrote the
program, the transformations performed by the compiler, the way the pro-
gram was invoked, and the sequence of events that occur during execution.
Thus, the number of processes and threads usually changes while your pro-
gram executes.

Some operating systems, compilers, and run-time systems impose restric-
tions on the relationship between processes, threads, and executables.
SPMD (Single Program Multiple Data) programs are parallel programs involv-
ing just one executable, executed by multiple threads and processes. MPMD
(Multiple Program Multiple Data) programs involve multiple executables,
each executed by one or more threads and processes.

Document Contents
Using the CLI assumes that you are familiar with and have experience de-
bugging programs with TotalView. For example, this book does not explain
how TotalView manipulates threads, processes, and groups. You will find
that information in the TOTALVIEW USER’S GUIDE.

Similarly, CLI commands are embedded within Tcl, which means that you’ll
get the best results using the CLI if you are familiar with Tcl. Fortunately, you
can find books describing Tcl at many book stores and you can also order
these books from online bookstores. Two excellent books are
2 Command Line Interface Guide Version 4.1

TotalView Command Line Interpreter

Document Contents
� Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison
Wesley, 1997.

� Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River,
N.J.: Prentice Hall PTR, 1997.

There is also a rich supply of resources available on the Web. Two starting
points are www.ajubasolutions.com and www.tcltk.com.

The best way to understand the kinds of information in this book is to take a
minute or two to browse through this book’s table of contents. The fastest
way to gain an appreciation of the actions performed by CLI commands is to
review Appendix A, which contains an overview of CLI commands.

Here is how the information in this book is organized:

Chapter 1: TotalView Command Line Interpreter

This first chapter introduces the CLI.

Chapter 2: A Few CLI/Tcl Macros

Because you already know how to program, your biggest challenge in
using the CLI will be remembering its commands and understanding how
they are used within the Tcl environment. This chapter presents a few
simple macros that demonstrate how the two are used together.

Chapter 3: Using the CLI
The CLI commands execute within the Tcl and TotalView environments.
(The code used by the CLI and TotalView that interacts with your pro-
grams is shared.) This chapter explains how you specify processes,
threads, and groups, name program locations, and the like.

Chapter 4: CLI Commands

This chapter contains the man pages for CLI commands.

Appendix A: CLI Command Summary

This appendix contains a listing of all CLI commands, a brief explanation
for what the command does, and a depiction of the command’s syntax.

Appendix B: CLI Command Aliases and Focus

Here you will find a table containing the predefined aliases for all com-
mands and the default focus for each command. (The focus indicates the
processes and threads upon which a command acts.)
Version 4.1 Command Line Interface Guide 3

1
TotalView Command Line Interpreter

Conventions
Conventions
The following table describes the conventions used in this book:

Reporting Problems

Please contact us if you have problems installing TotalView, questions that
are not answered in the product documentation or on our Web site, or sug-
gestions for new features or improvements.

Our Internet E-Mail addresses is support@etnus.com
1-800-856-3766 in the United States
(+1) 508-875-3030 worldwide

If you are reporting a problem, please include the following information:

� The version of TotalView and the platform on which you’re running
TotalView

� An example that illustrates the problem

� A record of the sequence of events that led to the problem

See the TOTALVIEW RELEASE NOTES for complete instructions on how to
report problems.

TABLE 1: Book Conventions

Convention Meaning
[] Brackets are used when describing parts of a command

that are optional. Be careful to distinguish between
brackets used in command descriptions and brackets
used by Tcl that evaluate expressions.

| Choose one of the listed commands. (| means “or”.)
arguments Within a command description, text in italic represent in-

formation you type. Elsewhere, italic is used for empha-
sis. You will not have any problems distinguishing be-
tween the uses.

Dark text Within a command description, dark text represent key
words or options that you must type exactly as dis-
played. Elsewhere, it represents words that are used in a
programmatic way rather than their normal way.
4 Command Line Interface Guide Version 4.1

Version 4.1
Chapter 2
A Few CLI/Tcl Macros
You can use the CLI in two ways—and, of course, you can combine these two
ways. The first is as a command-line debugger that acts as a complement to the
TotalView Graphical User Interface (GUI) debugger. The second is as a debugging
programming language that allows you to add your own commands and func-
tions.

This chapter contains a few macros that show how the CLI programmatically
interacts with your program and with TotalView. Reading a few examples without
bothering too much with details will give you an appreciation for what the CLI
can do and how it is used. As you will see, you really need to have a basic knowl-
edge of Tcl before you can make full use of all CLI features.

Setting the EXECUTABLE_PATH State Variable
The following macro recursively descends through all directories starting at
a location that you enter. (This is indicated by the root argument.) The macro
will ignore directories named in the filter argument. The result is then set as
the value of the CLI EXECUTABLE_PATH state variable.

#
Usage:
#
rpath <root> <filter>
#
If <root> is not specified, start at the current directory.
#
<filter> is a regular expression that removes unwanted
entries. If it is not specified, the macro automatically filters
out CVS/RCS/SCCS directories.
Command Line Interface Guide 5

2
A Few CLI/Tcl Macros

Print an Array Slice
#
The TotalView search path is set to the result.
#

proc rpath { { root "." } { filter "/(CVS|RCS|SCCS)(/|$)" } } {

Invoke the UNIX find command to recursively obtain all
directory names below “root”.
set find [split [exec find $root -type d -print] \n]

set npath ""

 # Filter out unwanted directories
foreach path $find {

if {! [regexp $filter $path] } {
append npath $path:

}
}

Tell TotalView to use it
dset EXECUTABLE_PATH $npath

}

In this macro, the final statement setting the EXECUTABLE_PATH state vari-
able is the only uniquely CLI statement. The other statements are standard
Tcl.

The dset command, like most CLI commands, begins with the letter d. (The
dset command is only used when assigning values to CLI state variables. In
contrast, values are assigned to Tcl variables using the standard Tcl set com-
mand.)

Print an Array Slice
The following macro prints a Fortran array slice. This macro, like other one
shown in this chapter, relies heavily on Tcl and uses unique CLI commands
sparingly.
6 Command Line Interface Guide Version 4.1

A Few CLI/Tcl Macros

Print an Array Slice
proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} {width 20}} {
for {set i $i1} {$i <= $i2} {incr i $i3} {

set row_out ""
for {set j $j1} {$j <= $j2} {incr j $j3} {

set ij [capture dprint $anArray\($i,$j\)]
set ij [string range $ij \

[expr [string first "=" $ij] + 1] end]
set ij [string trimright $ij]
if { [string first "-" $ij] == 1} {

set ij [string range $ij 1 end] }
append ij " "
append row_out " " [string range $ij 0 $width] " "

}
puts $row_out

}
}

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3,
j1:j2:j3) of a Fortran array to a numeric field whose width is specified by the
width argument. (This width does not include leading minus sign.)

All but one line is standard Tcl. This line uses the dprint command to obtain
the value of one array element. This element’s value is then captured into a
variable. (dprint does not return a value. The CLI capture command allows
a value that is normally printed to be sent to a variable.)

Here are several examples.

d1.<> pf2Dslice a 1 4 1 4
0.841470956802 0.909297406673 0.141120001673-0.756802499294
0.909297406673-0.756802499294-0.279415488243 0.989358246326
0.141120001673-0.279415488243 0.412118494510-0.536572933197

-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17

0.841470956802 0.909297406673 0.141120001673-0.756802499294
0.909297406673-0.756802499294-0.279415488243 0.989358246326
0.141120001673-0.279415488243 0.412118494510-0.536572933197

-0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 2 2 10

0.84147095 0.14112000
0.14112000 0.41211849

d1.<> pf2Dslice a 2 4 2 4 2 2 10
-0.75680249 0.98935824
0.98935824-0.28790330

d1.<>
Version 4.1 Command Line Interface Guide 7

2
A Few CLI/Tcl Macros

Setting Breakpoints
Setting Breakpoints
In many cases, your knowledge of what a program is doing lets you make
predictions as to where problems will occur. The following CLI macro parses
comments that you can include within a source file and, depending on the
comment’s text, sets a breakpoint or an evaluation point.

Immediately following this listing is an excerpt from a program that uses this
macro.

make_actions: Parse a source file, and insert
evaluation and breakpoints according to comments.
#
proc make_actions { { filename ““ } } {

if { $filename == ““ } {
puts “You need to specify a filename”
error “No filename”

}

Open the program’s source file and initialize a few
variables

set fname [set filename]
set fsource [open $fname r]
set lineno 0
set incomment 0

Look for “signals” that indicate the kind of action
point. These signals are buried in the C comments.

while { [gets $fsource line] != -1} {
incr lineno
set bpline $lineno

Look for a one-line evaluation point. The
format is ... /* EVAL: some_text */.
The text after EVAL and before the “*/” in
the comment is assigned to “code”.

if [regexp “/* EVAL: *(.*)*/” $line all code] {
dbreak $fname\#$bpline -e $code
continue

}

8 Command Line Interface Guide Version 4.1

A Few CLI/Tcl Macros

Setting Breakpoints
Look for a multiline evaluation point
if [regexp “/* EVAL: *(.*)” $line all code] {

Append lines to “code”.
while { [gets $fsource interiorline] != -1} {

incr lineno

tabs will confuse dbreak.
regsub -all \t $interiorline “ “ interiorline

If “*/” is found, add the text to “code”, then
leave the loop. Otherwise, add the text, and
continue looping.
if [regexp “(.*)*/” $interiorline all interiorcode] {

append code \n $interiorcode
break

} else {
append code \n $interiorline

}
}
dbreak $fname\#$bpline -e $code
continue

}
Look for a breakpoint

if [regexp “/* STOP: .*” $line] {
dbreak $fname\#$bpline
continue

}
Look for a command to be executed by Tcl.

if [regexp “/* *CMD: *(.*)*/” $line all cmd] {
puts “CMD: [set cmd]”
eval $cmd

}
}
close $fsource

}

The only similarity between this example and the previous two is that almost
all of the statements are Tcl. The only purely CLI commands are the
instances of the dbreak command. (This command sets evaluation points
and breakpoints.)

The following excerpt from a larger program shows how you would embed
comments within a source file that would be read by this macro:
Version 4.1 Command Line Interface Guide 9

2
A Few CLI/Tcl Macros

Setting Breakpoints
...
struct struct_bit_fields_only {

unsigned f3 : 3;
unsigned f4 : 4;
unsigned f5 : 5;
unsigned f20 : 20;
unsigned f32 : 32;

} sbfo, *sbfop = &sbfo;
...
int main()
{

struct struct_bit_fields_only *lbfop = &sbfo;
...

int i;
int j;

sbfo.f3 = 3;
sbfo.f4 = 4;
sbfo.f5 = 5;
sbfo.f20 = 20;
sbfo.f32 = 32;

...
/* TEST: Check to see if we can access all the values */
i=i; /* STOP: // Should stop */
i=1;/* EVAL: if (sbfo.f3 != 3) $stop; // Should not stop */
i=2;/* EVAL: if (sbfo.f4 != 4) $stop; // Should not stop */
i=3;/* EVAL: if (sbfo.f5 != 5) $stop; // Should not stop */
...
return 0;

}

The make_actions macro reads a source file one line at a time. As it reads
these lines, the regular expressions look for comments that begin with
/* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an evaluation points at an eval line, or executes a com-
mand at a cmd line.

Using evaluation points can be confusing because evaluation point syntax
differs from that of Tcl. In this example, the $stop command is a command
contained within TotalView (and the CLI). It is not a Tcl variable. In other
cases, the evaluation statements will be in the C or Fortran programming
languages.
10 Command Line Interface Guide Version 4.1

Version 4.1
Chapter 3
Using the CLI
The two components of the Command Line Interpreter (CLI) are the Tcl-based
programming environment and the commands added to the Tcl interpreter that
allow you to debug your program. This chapter looks at how these components
interact and describes how you specify processes, groups, and threads.

This chapter tends to emphasize interactive use of the CLI rather than using the
CLI as a programming language because many of the concepts that will be dis-
cussed are easier to understand in an interactive framework. However, everything
that you will read can be used in both environments.

How a Debugger Operates
The CLI and TotalView debuggers affect the target program but are not part
of the target program's process. That is, TotalView and the CLI run in sepa-
rate processes, and their semantics are separate from the target program’s
semantics.

A CLI interaction has two kinds of input: the executables that make up the
target program and the Tcl and CLI commands that you type or execute. Be-
cause the CLI debugs programs at the source code level, each executable
must be associated with debugging information. On most systems, this re-
quires that you create the executable with special compiler options. In al-
most all cases, you will use –g, which tells the compiler to add information
that lets the CLI display high-level output to the user, expressed in terms of
the procedures and variables used in the source code. This option also al-
lows the CLI to access components of the program (such as source files),
eliminating the need for some assistance from the user.
Command Line Interface Guide 11

3
Using the CLI

How a Debugger Operates
Tcl and the CLI

The TotalView CLI is built on top of version 8.0 of Tcl, and the TotalView CLI
commands are built within the TotalView version of Tcl. The CLI is not a li-
brary of commands that you can bring into other implementations of Tcl.
However, the Tcl integrated with the CLI supports all libraries and operations
that run using version 8.0 of Tcl.

Integrating CLI commands into Tcl makes them intrinsic commands of Tcl.
This means that you can enter and execute CLI commands in exactly the
same way as you enter and execute built-in Tcl functions such as file or
array. It also means that you can embed Tcl primitives and functions within
CLI commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl
commands to manipulate that list, then have a CLI command operate on
the elements of this list. Or, you create a Tcl function that dynamically builds
the arguments that a process will use when it begins executing.

Because the CLI is an integral part of TotalView’s version of Tcl, there are no
differences between using a CLI command and using a Tcl command. Fur-
thermore, all CLI operations can be manipulated by Tcl.

The CLI and TotalView

The following figure illustrates the relationship between the CLI, TotalView,
and your program:

FIGURE 1: The CLI and TotalView

CLI GUI

TotalView

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged
12 Command Line Interface Guide Version 4.1

Using the CLI

How a Debugger Operates
The CLI and the GUI are interfaces that communicate with TotalView, which
is the component that actually performs the debugging work. The dotted
arrow between the GUI and the CLI indicates that you can invoke the CLI
from the GUI. The reverse is not true: you cannot invoke the GUI from the
CLI.

In turn, TotalView communicates to the processes that make up your pro-
gram and TotalView receives information back from these processes and
passes them back to the component that sent a request.

The CLI Interface

The way in which you interact with the CLI is by entering a CLI command.
Typically, the effect of executing a CLI command is one or more of the fol-
lowing:

� Information about the target program is displayed.

� A change takes place in the target program’s state.

� A change takes place in the information that the CLI maintains about the
target program.

The CLI signals that it has completed a command by displaying a prompt.

The CLI command performs actions sequentially, and it can only process
one command at a time. For instance, if you enter a command that prints
out an array, the CLI does not redisplay its prompt until all elements of the
array are displayed.

Although CLI commands are executed sequentially, commands executed by
your program may not be. For example, the CLI does not require that the
target program be stopped when it prompts for and performs commands. It
only requires that the last command be complete before it can begin exe-
cuting the next one. In many cases, the processes and threads being de-
bugged continue to execute while the CLI is performing commands.

Entering Ctrl-C while a CLI command is executing interrupts that CLI com-
mand or executing Tcl macro. If the CLI is displaying its prompt, typing Ctrl-
C stops executing processes.
Version 4.1 Command Line Interface Guide 13

3
Using the CLI

Starting the CLI
Starting the CLI
You can start the CLI in two ways:

� You can start the CLI from within the TotalView window by placing the cur-
sor in the Root window, and then bringing up the TotalView pop-up menu.
(In most cases, you will right-click your mouse button.) The menu dis-
played is as follows:

After selecting the Open Command Line Window command, TotalView
opens a window into which you can enter CLI commands. (The accelera-
tor for this command is the capital letter “C”.)

� You can start the CLI directly from a shell prompt by typing totalviewcli.
(This assumes that the TotalView binary directory is in your path.)

Here is snapshot of a CLI window:

FIGURE 2: TotalView Root Window Pop-up Menu

FIGURE 3: CLI xterm Window
14 Command Line Interface Guide Version 4.1

Using the CLI

Starting the CLI
If you have problems with command line editing, it could because you in-
voked the CLI from a shell or process that manipulates your stty settings.
You can eliminate these problems if you use the stty sane CLI command. (If
the sane option is not available, you will have to change values individually.)

Debugger Initialization

An initialization file contains commands that let you modify the CLI Tcl envi-
ronment and add your own functions to this environment. This file, named
.tvdrc, is read when the CLI begins executing. It can be located in your home
directory or the directory from which you invoked TotalView. If it is present in
both locations, the CLI executes both files. TotalView executes the file in
your home directory before the file in the current directory.

Typically, the .tvdrc file contains command, function, and variable defini-
tions and function calls that you want executed whenever you start a new
debugging session.

Executing a Start-Up File

If you add the -s filename option to either the totalview or totalviewcli shell
commands, you can have TotalView execute the CLI commands contained
within filename.

The start-up file executes after .tvdrc files execute. The following figure
shows the sequence in which initialization and startup files execute:

This option lets you initialize the debugging state of your program, run the
program you are debugging until it reaches some point where you are ready

FIGURE 4: Startup and Initialization Sequence

home .tvdrc

local .tvdrc

-s startup file

.Xdefaults

command options

global tvdinit.tvd
Version 4.1 Command Line Interface Guide 15

3
Using the CLI

Starting the CLI
to begin debugging, and even lets you create a shell command that starts
the CLI.

Here is a small CLI program:

#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT { 0 4 -wp}
dstep
catch { make_actions fork_loop.cxx } msg
puts $msg

This program begins by loading and interpreting the make_actions.tcl file.
(This was described in Chapter 2.) loads the fork_loop executable, sets its
default start-up arguments, then steps one source level statement.

If this were stored in a file named fork_loop.tvd, here is how you would tell
TotalView to start the CLI and execute this file:

totalviewcli -s fork_loop.tvd

Information on options and X Resources can be found in the TOTALVIEW
USER’S GUIDE.

The following example shows how you would place a similar set of com-
mands in a file that you would invoke from the shell:

#!/bin/sh
Next line executed by shell, but ignored by Tcl because of: \

exec totalviewcli -s "$0" "$@"
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

Notice that the only difference is the first few lines in the file. In the second
line, the continuation character is ignored by the shell. However, it is pro-
cessed by Tcl. This means that the shell will execute it and Tcl will ignore it.
16 Command Line Interface Guide Version 4.1

Using the CLI

Starting the CLI
Starting Your Program

The CLI lets you start debugging operations in several ways. To execute the
target program from within the CLI, enter a dload command followed by the
drun command. The following example shows using the totalviewcli com-
mand to start the CLI. This is followed by dload and drun commands. As
this was not the first time the file was run, breakpoints exist from a previous
session.

NOTE In this listing, the CLI prompt is “d1.<>”. The information preceding the final
“>” symbol indicates the processes and threads upon which the current command
act. Processes and threads are discussed throughout this chapter. In addition, the
prompt itself is discussed in “Command and Prompt Formats” on page 32.

% totalviewcli
IRIX6 MIPS TotalView 4X.0.0-7
Copyright 1999 by Etnus, Inc. ALL RIGHTS RESERVED.
Copyright 1996-1998 by Dolphin Interconnect Solutions, Inc.
Copyright 1989-1996 by BBN Inc.

tcl_library is set to "/opt/totalview/lib"

d1.<> dload arrays # load the “arrays” program
Mapping 430 bytes of ELF string data from 'arrays'...done
Digesting 42 ELF symbols from 'arrays'...done
Skimming 1825 bytes of DWARF '.debug_info' symbols from

'arrays'...done
Indexing 408 bytes of DWARF '.debug_frame' symbols from

'arrays'...done
...
Loading 1122 bytes of DWARF '.debug_info' information for

arrays.F...done
1
d1.<> dactions # show action points
2 action points for process 1:

1 addr=0x1000114c [arrays.F#53] Enabled
2 addr=0x10000f34 [arrays.F#29] Enabled

d1.<> drun # run “arrays” until first action point
Created process 1/10715, named "arrays"
Version 4.1 Command Line Interface Guide 17

3
Using the CLI

Starting the CLI
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in

"check_fortran_arrays_"

This two-step operation allows you to set action points in the target pro-
gram before execution begins. It also means that you can execute a program
more than once, keeping TotalView state settings (such as the location of
action points) in effect. At a later time, you can use the drerun command to
tell the CLI to restart program execution, perhaps sending it new command-
line arguments. In contrast, reentering the dload command tells the CLI to
reload the program into memory (for example, after editing and recompiling
the program). This has the side effect of creating new processes.

The dkill command forcibly terminates one or more processes of a program
started by using dload, drun, or drerun. The following contrived examples
continues executing the arrays program of the previous example:

d1.<> dkill # kill process
Process 1 has exited
d1.<> drun # runs “arrays” from beginning
Created process 1/10722, named "arrays"
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in "check_fortran_arrays_"
dlist -e -n 3 #Shows lines about execution point
Loading 168 bytes of DWARF '.debug_info' information
for /comp2/mtibuild//targ64_m4/libftn/lseek64_.s...done
Loading 760 bytes of DWARF '.debug_info' information for

vtan.c...done
Loading 1864 bytes of DWARF '.debug_info' information for

ns_passwd.c...done
28 do 10 i = 1, 100
29@> master_array (i) = i * i * i
30 0 continue

d1.<> dwhat master_array # Show me information
Loading 901 bytes of DWARF '.debug_info' information for

main.c...done
In thread 1.1:
Name: master_array; Type: integer*4(100); Size: 400 bytes;

Addr: 0xffffffac90
Address class: auto_var (Local variable)Loading 188 bytes of
DWARF '.debug_info' information for

/xlv55/irix/lib/libc/libc_64_M4/csu/crt1tinit.s...done
18 Command Line Interface Guide Version 4.1

Using the CLI

CLI Output
d1.<> drun # Notice the error message
drun: Process 1 already exists. Kill it first, or use rerun.
d1.<> dkill # kill processes again
Process 1 has exited

d1.<> drun
Created process 1/10730, named "arrays"
Thread 1.1 has appeared
d1.<> Thread 1.1 hit breakpoint 2 at line 29 in "check_fortran_arrays_"

In this example, notice that informational messages are interleaved (some-
times inconveniently) throughout the interaction. The occurs because the
CLI prompt lets you know that the CLI is ready to accept another command.
The messages, on the other hand, let you know what has happened with the
executing process. These events seldom come at the same time.

Because information is interleaved, you may not realize that the prompt has
appeared. It is always safe to use your Enter key to have the CLI redisplay
its prompt. If a prompt is not displayed after you press Enter, then you know
that the CLI is still executing.

NOTE To associate the CLI with a currently executing target program, use the
dattach command.

CLI Output
A CLI command can either print its output to a window, or it can return the
output as a character string. If the CLI executes a command that returns a
string value, it also prints the returned string. Most of the time, you are not
concerned with the difference between printing and returning-and-printing.
Either way, information is displayed in your window. And, in both cases,
printed output is fed through a simple more processor. (This is discussed in
more detail in the next section.)

Here are two cases where it matters whether output is printed directly or is
just returned:
Version 4.1 Command Line Interface Guide 19

3
Using the CLI

CLI Output
� When the Tcl interpreter executes a list of commands, only the informa-
tion returned from the last command is printed. Information returned by
other commands is not shown.

� You can only assign the output of a command to a variable if the com-
mand’s output is returned by the command. Output that is printed
directly cannot be assigned to a variable or otherwise manipulated unless
it is first saved with the capture command.

For example, the dload command returns the ID of the process object that
was just created. The ID is normally printed by the interpreter—unless, of
course, the dload command appears in the middle of a list of commands.
For example:

{ dload test_program ; dstatus }

In this case, the CLI does not display the ID of the loaded program since
dload was not the last command in the list. On the other hand, you can eas-
ily assign the ID of the new process to a variable:

set pid [dload test_program]

In contrast, you cannot assign the output of the help command to a vari-
able. For example, the following does not work:

set htext [help]

This statement assigns an empty string to htext because help does not re-
turn text; it just prints information.

To capture the output of a command that normally prints its output, use the
capture command. For example, the following places the output of the help
command into a variable:

set htext [capture help]

“more” Processing

When the CLI displays output, it sends data through a simple internal more-
like process. This process prevents data from scrolling off the screen before
it can be viewed. After you see the MORE prompt, you must enter a Return
to continue with the next screen of data. If you type q (followed by a Return),
any remaining buffered output is discarded.
20 Command Line Interface Guide Version 4.1

Using the CLI

Built-In Aliases and Group Aliases
You can control the number of lines displayed between prompts by setting
the LINES_PER_SCREEN state variable. (See dset on page 80 for more infor-
mation.)

Built-In Aliases and Group Aliases
Almost every CLI command has an alias that allows you to abbreviate the
command’s name. (An alias is one or more characters that the Tcl interprets
as a command.) These aliases are listed in Appendix B.

NOTE The alias command (see Chapter 4) lets you create your own aliases.

After a few minutes of entering CLI commands, you will quickly come to the
conclusion that is much more convenient to use the command abbrevia-
tion. For example, you could type:

dfocus g dhalt

This command tells the CLI to halt the current group. However, it is much
easier to type:

f g h

While less-used commands are often typed in full, a few commands are al-
most always abbreviated. These command include dbreak (b), ddown (d),
dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase “group” versions of aliases for a number of
commands, including all stepping commands. For example, the alias for
dstep is “s”; in contrast, “S” is the alias for “dfocus g dstep”. These group
aliases differ from “native” group-level commands in two ways:

� They do not work if the current focus is a list. The g focus specifier mod-
ifies the current focus, and it can only be applied if the focus contains just
one term.

� They always act on the group, no matter what width is specified in the
current focus. Therefore, dfocus t S does a step-group command.
Version 4.1 Command Line Interface Guide 21

3
Using the CLI

Command Arguments
Command Arguments
The default command arguments for a process are stored in the ARGS(#)
variable, where # is the CLI ID for the process. If the ARGS(#) variable is not
set for a process, the CLI uses the value stored in the ARGS_DEFAULT vari-
able. ARGS_DEFAULT is set if you had used the -a option when starting the
CLI or TotalView. For example:

totalviewcli -a argument-1, argument-2 , ...

NOTE The -a option tells TotalView to pass the information that follows to the pro-
gram.

To set (or clear) the default arguments for a process, you can use dset to
modify the ARGS() variables directly, or you can start the process with the
drun command. For example, here is how you can clear the default argu-
ment list for process 2:

dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained
within ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT vari-
able. For example:

dunset ARGS_DEFAULT

All commands (except drun) that create a process—including dgo, drerun,
dcont, dstep, and dnext—pass the default arguments to the new process.
The drun command differs in that it replaces the default arguments for the
process with the arguments that are passed to it.

Symbols
This section discusses how the CLI handles symbols and other names corre-
sponding to various entities within the program state, the machine state, or
the TotalView state.
22 Command Line Interface Guide Version 4.1

Using the CLI

Symbols
Symbol Names and Scope

Many commands refer to one or more program objects by using symbol
names as arguments. In addition, some commands take expressions as ar-
guments, where the expression can contain symbol names representing
program variables.

NOTE Because the CLI is built on top of TotalView, the way in which the CLI interprets
symbols is the way that TotalView interprets them.

TotalView learns about a program's symbols and their relationships by read-
ing the debugging information that was generated when the program was
compiled. The information includes a mapping from symbol names to
descriptions of objects, providing information about a symbol’s use (for
example, a function), where it is located in memory after the executable is
loaded, and associated features (for example, number and data types of a
function’s arguments). While TotalView smooths over many differences, the
information provided by compiler manufacturers is not uniform, and differ-
ences exist between the kinds of information provided by Fortran, C, and
C++ compilers.

In all cases, the concept of scope is central to the way TotalView interprets
and accesses symbols. For the languages debugged by TotalView, a program
consists of one or more scopes that are established by the program’s struc-
ture. Typically, some scopes are nested within others. Every statement in a
program is associated with a particular scope, and indirectly with the other
scopes containing that scope.

Whenever a CLI command contains a symbol name, TotalView consults its
debugging information to discover what object it refers to—this process is
known as symbol lookup. Symbol names are not required to be unique within
a program, making the task of symbol lookup both complex and context–
sensitive. A symbol lookup is performed with respect to a particular context,
expressed in terms of a single thread of execution. Each context uniquely
identifies the scope to which a symbol name refers.
Version 4.1 Command Line Interface Guide 23

3
Using the CLI

Symbols
Qualifying Symbol Names

While the commands dup and ddown (which move up and down the stack)
let you change the current context—which changes the target scope being
searched—to some frame other than the one currently executing, standard
lookup methods are cumbersome when you are examining a symbol in
some other scope.

The syntax for qualifying a symbol with a scope closely resembles that for
specifying a source location. The scopes within a target program form a tree,
with the outermost scope as the root. At the next level are executable files
and dynamic libraries; further down are compilation units (source files), pro-
cedures, and other scoping units (for example, blocks) supported by the
programming language. Qualifying a symbol is equivalent to specifying
which scope it is in, or describing the path to a node in the tree. This is sim-
ilar to describing the path to a file in a tree-structured file system.

A symbol is fully qualified in terms of its scope when all levels of the tree are
included:

[#executable-or-lib#][file#][procedure-or-line#]symbol

In this definition, the pound sign (#) is a separator character.

The components of the symbol name are interpreted as follows:

� Just as file names need not be qualified with a full path, you can qualify a
symbol’s scope without including all levels in the tree.

� Because programming languages typically do not let you name blocks,
that portion of the qualifier is specified as a line number within the block.

� If a qualified symbol begins with #, the name that follows indicates the
name of the executable or shared library (just as an absolute file path
begins with a directory immediately within the root directory). If the exe-
cutable or library component is omitted, the qualified symbol does not
begin with #.

� The source file’s name may appear after the (possibly omitted) execut-
able or shared library.

� The procedure name or block component (represented by a line number
from that block) may appear after the (possibly omitted) source file name.
This component is followed by #.
24 Command Line Interface Guide Version 4.1

Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
� The symbol name follows the (possibly omitted) procedure or block
name. Since qualified symbols often appear in the context of an expres-
sion, the final symbol name could be followed by a dot (.), plus the name
of a field from a class, union, or structure.

You can omit any part of the scope specification that is not needed to
uniquely identify the symbol. Thus, foo#x identifies the symbol x in the pro-
cedure foo. In contrast, #foo#x identifies either procedure x in executable
foo or variable x in a scope from that executable.

Similarly, #foo#bar#x identifies variable x in procedure bar in executable
foo. If bar were not unique within that executable, the name would be
ambiguous unless you further qualified it by providing a file name. Ambigu-
ities can also occur if a file-level variable (common in C programs) has the
same name as variables declared within functions in that file. For instance,
bar.c#x refers to a file-level variable, but the name can be ambiguous when
there are different definitions of x embedded in functions occurring in the
same file. In this case, you would need to say bar.c#1#x to identify the
scope that corresponds to the “outer level” of the file (that is, the scope
containing line 1 of the file).

You can use the dwhat command to determine if an unqualified or partially
qualified symbol name is ambiguous.

Effects of Parallelism on TotalView and CLI Behavior
A parallel program consists of some number of processes, each involving
some number of threads. Processes fall into two categories, depending on
when they are created:

� Initial process

A preexisting process from the normal run-time environment (that is, cre-
ated outside the debugger) or one that was created as TotalView loaded
the target program.

� Spawned process

A new process created by a process executing under the CLI’s control.
Version 4.1 Command Line Interface Guide 25

3
Using the CLI

Effects of Parallelism on TotalView and CLI Behavior
TotalView assigns an integer value to each individual process and thread un-
der its control. This process/thread identifier can be the system identifier asso-
ciated with the process or thread. However, it can be an arbitrary value
created by the CLI. Process numbers are unique over the lifetime of a de-
bugging session; similarly, thread numbers are also unique over the lifetime
of a process.

Process/thread notation lets you identify the component that a command
targets. For example, if your program has two processes, and each has two
threads, four threads exist:

Thread 1 of process 1
Thread 2 of process 1
Thread 1 of process 2
Thread 2 of process 2

You would identify the four threads as follows:

1.1—Thread 1 of process 1
1.2—Thread 2 of process 1
2.1—Thread 1 of process 2
2.2—Thread 2 of process 2

Groups

When you start a multiprocess program, the CLI adds each process to a pro-
cess group as the process starts. The debugger groups the processes
depending on the type of system call (fork() or execve()) that created or
changed the processes. There are two different types of process groups:

Program Group Includes the parent process and all related processes.
A program group includes children that were forked
(processes that share the same source code as the
parent) and children that were forked but which subse-
quently called execve(). That is, these are processes
that do not share the same source code as the parent.

Share Group Includes only the related processes that share the
same source code.
26 Command Line Interface Guide Version 4.1

Using the CLI

Process/Thread Sets and Arenas
In general, if you are debugging a multiprocess program, the program group
and share group differ only when the program has children that are forked
with a call to execve().

Process/Thread Sets and Arenas
A P/T (Process/Thread) set is a list of one or more of the threads known to the
CLI. You create a P/T set by placing one or more P/T identifiers within a Tcl
list; that is, you enter them within braces ({}) or use Tcl commands that cre-
ate and manipulate lists, or, in some cases, enter them as an argument to a
CLI command. For example, the following list contains specifiers for process
2, thread 1 and process 3, thread 2:

{ p2.1 p3.2 }

NOTE A P/T list element is either a single thread or an “arena” of threads, as is
explained below.

Unlike a serial debugger, where each command clearly applies to the only
executing thread, the CLI usually controls and monitors many threads and
many different locations corresponding to a program symbol name (for
example, a variable). The concept of the target P/T set restricts a CLI com-
mand so that it applies to one, many, or all threads of control.

In you do not explicitly specify a P/T set, the target set is implicitly defined.
This set is displayed as the (default) CLI prompt. You can change the set to
which a command is applied with the dfocus command. If dfocus is exe-
cuted as a separate command, it changes the default P/T set. If, however, it
is contained as part of another command, it just changes the target of this
command. After the command executes, the old default is restored. For
example, assume that the current focus is process 1, thread 1. The following
commands change the focus to group 2 and then steps the group twice:

dfocus g2
dstep
dstep

In contrast, the following commands step group 2, then steps process 1,
thread 1:
Version 4.1 Command Line Interface Guide 27

3
Using the CLI

Process/Thread Sets and Arenas
dfocus g2 dstep
dstep

NOTE This chapter almost always presents the long, unabbreviated name for CLI
commands. When you are interactively using the CLI, you would probably use the pre-
defined aliases. For example, it is much easier to type “f g2 s” instead of “dfocus g2
dstep”. (See Appendix B for a list of aliases.)

Some commands can be applied only at the process level—that is, you can-
not apply them to a single thread (or group of threads) in the process, but
must apply them to all or to none.

Specifying Processes and Threads

The P/T set is specified as a list of arena specifiers where an arena is the pro-
cesses, threads, and groups that are affected by a CLI debugging command.
Each arena specifier describes a single area in which a command will act; the
list is just a collection of arenas. Most commands iterate over the list, acting
on each arena in turn. Some output commands, however, may combine the
arenas and act on them as a single target.

An arena specifier includes a width specifier and a thread of interest. (“Width
specifiers” are discussed later in this section.)

The thread of interest is specified as p.t where p is the TotalView process ID
(PID) and t is the TotalView thread ID (TID).

In addition, the less-than symbol (<) character, when used in place of the
TID, indicates the first user thread in the process. This is useful when the first
user thread is not thread 1; for example, the first and only thread may be
thread number 3 on Compaq systems.

The complete P/T set specifier has the following form:

<width><process_id>.<thread_id>

width indicates how large a set of processes and threads are affected by
each command, and is one of the following letters:

t Thread width

Just one thread is the target of the action.
28 Command Line Interface Guide Version 4.1

Using the CLI

Process/Thread Sets and Arenas
p Process width

The process containing the thread of interest is the target of the
action.

g Group width

The group containing the process of the thread of interest is the
target of the action.

a All processes

Every process known to the CLI is the target of the action.

d Default width

The width of action will depend on the default for each com-
mand. This is the width to which the default focus is set. For
example, the dstep command defaults to process width (run the
process while stepping one thread), and the dwhere command
defaults to thread width (backtrace just one thread).

The process_id.thread_id combination identifies the process and thread of
interest. The thread of interest is the primary thread that is affected by a
command. For example, the dstep command always steps the thread of in-
terest, but it may optionally run the rest of the threads in the process of in-
terest and may step other processes in the group.

NOTE On some systems, TotalView cannot distinguish manager threads from user
threads, and manager threads may be chosen by mistake.

The thread of interest specifies a particular target thread, while the width
specifies how many threads surrounding the thread of interest are affected.
For example, the dstep command always requires a thread of interest, but
entering this command can

� Run just the thread of interest during the step operation (single-thread
single-step).

� Run all threads in the containing process during the operation (process-
level single-step).

� Step all processes in the group which have threads at the same PC (pro-
gram counter) as the thread of interest (group-level single-step).

Here are some examples:
Version 4.1 Command Line Interface Guide 29

3
Using the CLI

Process/Thread Sets and Arenas
d1.< Use the default set for each command, focusing on the first user
thread in process 1.

g2.3 Select process 2, thread 3; commands act on the entire group.

t1.7 Commands act only on thread 7 of process 1.

You can leave out parts of the P/T set if what you do enter is unambiguous.
A missing width or PID is filled in from the current focus. A missing TID is
always assumed to be <.

To save a P/T set definition for later use, assign it to a Tcl variable. For exam-
ple:

set myset { g2.3 t3.1 }
dfocus $myset dgo

The thread of interest can also be modified by a width specifier.

Incomplete Arena Specifiers

In general, you do not need to completely specify an arena. Missing compo-
nents are assigned default values or are filled in from the current focus. The
only requirement is that the meaning of each part of the specifier cannot be
ambiguous. Here is how the CLI fills in missing pieces:

� A dot typed before or after the number lets the CLI know if you are spec-
ifying a process or a thread. For example, “1.” is clearly a PID, while “.7”
is clearly a TID.

� If you enter a width without specifying a process or a thread, the CLI uses
the PID and TID from the current focus.

� If the width is p or t, you can omit the dot.

If you use a process or thread width specifier, and give just one number,
the CLI assumes that the number is either a process or a thread ID. For
instance, p3 refers to process 3, while t7 refers to thread 7.

� If you do not use a width, the CLI uses the width from the current focus.

� If you do not use a PID, the CLI uses the PID from the current focus.

� If you use a PID and do not specify a TID, the CLI assumes that you are
specifying TID < where < indicates the first thread.

In most cases, the CLI does not use the TID from the current focus, since
the TID is a process-relative value. Note that this is an important case for
30 Command Line Interface Guide Version 4.1

Using the CLI

Process/Thread Sets and Arenas
handling groups of single-threaded processes or groups of processes
with just one user thread (which should be thread 1).

� If you set the focus to a list, no focus-based defaulting is allowed.

Using lists as a focus requires that you also use an explicit width and PID.
In this case, the CLI will not look for default values from the current focus.
If you omit the thread, the CLI uses the first thread; that is the thread
obtained when you use <.

Lists With Inconsistent Widths

All arena specifiers have the same format. This can be confusing when a list
contains more than one width specifier. Consider the following:

{ p2 g3.4 t7 }

This set of objects is clear enough: all of process 2, all processes in the same
group as process 3, thread 4, and thread 7. However, how should the CLI
use this set of processes, groups, and threads?

A simplistic answer is that the command uses the width of each of these
arenas to determine the number of threads from the arena on which it will
act, and then act on these threads. This is exactly what the dgo command
does. In contrast, the dwhere command creates a call graph for process-
level arenas, and the dstep command runs all threads in the arena while
stepping the thread of interest. It may wait for threads in multiple processes
for group-level arenas.

More generally, when the focus is a list, most commands iterate over the list
and act on each arena. If the CLI cannot interpret an inconsistent focus, it
prints an error message.

Kinds of IDs

In a multithreaded, multiprocess, distributed program, you are exposed to a
many kinds of IDs. Here is some background on the kinds used in the CLI
and TotalView:

System pid This is the process ID and is generally called the pid.
This ID is usually has a value between 100 and 32,000.
However, it can be higher on some systems.
Version 4.1 Command Line Interface Guide 31

3
Using the CLI

Command and Prompt Formats
Debugger pid This is a sequentially numbered value beginning at 1
that is incremented for each new process. These IDs
are used in the CLI to identify processes. Note that if
the target process is killed and restarted (that is, you
use the following two commands: dkill and drun), the
debugger pid will remain the same. The system pid,
however, changes since this is a new target process.

System tid This is the ID of the target system kernel or user thread.
On some systems, the target thread IDs have no obvi-
ous meaning (for example, AIX). On other systems,
they start at 1 and are incremented by 1 for each pro-
cess.

TotalView thread ID This is usually identical to the system thread ID. On
some systems (such as AIX where the threads have no
obvious meaning), TotalView uses its own IDs.

Pthread ID This is the ID assigned by the Posix PTHREADS pack-
age. On most systems, this differs from the system
thread ID. In these cases, it is a pointer value that
points to the Pthread ID.

Command and Prompt Formats
The appearance of the CLI prompt lets you know that the CLI is ready to
accept a user command. By default, the prompt lists the current focus, and
then displays a greater than symbol (>) and a blank space. (The current focus
is the processes and threads to which the next command applies.) For
example (and these are the same examples used in a previous section of this
chapter):

d1.<> The current focus is the default set for each command, focusing
on the first user thread in process 1.

g2.3> The current focus is process 2, thread 3; commands act on the
entire group.

t1.7> The current focus is thread 7 of process 1.

You can change the prompt’s appearance by using the dset command to set
the PROMPT state variable. For example:
32 Command Line Interface Guide Version 4.1

Using the CLI

Controlling Program Execution
dset PROMPT “Kill this bug!”

Controlling Program Execution
Execution control is relatively simple in a serial debugging environment. The
target program is either stopped or running. When the program is running,
an event such as arriving at a breakpoint can occur, which tells the CLI to
stop the program. Sometime later, you will probably tell the serial program
to continue executing. Parallel program execution is more complex, how-
ever, since each thread has an individual execution state. When a thread (or
set of threads) triggers a breakpoint, a question arises as to what, if any-
thing, should be done about the other threads and processes.

The processes and threads that the CLI will stop depends on whether the
breakpoint is marked as stopping the group or the process. If a group is
stopped, all processes in the program group are stopped.

The way in which the CLI tells processes and threads to resume execution
(that is, you enter a dgo, dstep, dcont, or dwait command) is exactly oppo-
site to the way it stops processes and threads: a resume command undoes
the effect of triggering a breakpoint.

Advancing Program Execution

Debugging begins by executing a dload or dattach command. If dload is
used, it must be followed by drun. These three commands apply to entire
processes, not to individual threads. (The same is true of the dkill com-
mand.)

To advance program execution, you enter a command that causes one or
more threads to execute instructions. The commands are applied to a target
P/T set, making it possible to advance certain processes while others are
held back. You can also advance program execution by increments, stepping
the target program forward, and you can define the size of the increment.

In most debugging sessions, you are telling the CLI to stop and start your
program. After a process stops, you can examine its state. In this sense, a
debugger can be thought of as tool that allows you to alter a program’s state
Version 4.1 Command Line Interface Guide 33

3
Using the CLI

Controlling Program Execution
in a controlled way. And, debugging is the process of stopping the process
to examine its state. However, the term “stop” has a slightly different mean-
ing in a multiprocess, multithreaded program; it now means that the CLI
holds one or more threads at a fixed execution location until you enter a
command that tells them to resume their execution.

Once a program is loaded, each process that is actively executing moves
among three execution states: running, stopped/runnable, or stopped/
held.

Running State: The running state, which means that one or more pro-
cesses or threads are running, is defined from the perspective of the CLI.
From the perspective of the underlying run-time environment, a process
may make many transitions between being ready to run and actually run-
ning, but these lower-level transitions are invisible to TotalView and the CLI.

Stopped/Runnable State: A process enters the stopped/runnable state
when any of the following occurs:

� The executable is first loaded or TotalView first attaches to an existing
process.

� You explicitly tell the CLI to stop the process.

� The process's execution triggers a program event.

� Some other process's execution triggers a program event that affects this
thread.

Once the process stops, you can use CLI commands to examine and change
the process’s state. After performing some operation, you will usually tell it
to resume executing.

Stopped/Held State: The stopped/held state is similar to stopped/run-
nable, differing in that a process in this state does not respond to resume
commands. A process typically enters this state as a result of hitting a bar-
rier and waiting for the remaining threads to enter this same barrier. The pro-
cess’s state must first be changed to stopped/runnable (when the barrier
has been satisfied or by an explicit user command) before it is eligible for
resuming.
34 Command Line Interface Guide Version 4.1

Using the CLI

Stepping
Action Points

By defining action points, you can tell the CLI that it should stop a program’s
execution. The CLI lets you specify four different kinds of action points:

� A breakpoint stops the process when the program reaches a location in the
source code.

� A watchpoint stops the process when the value of a variable is changed.

� A barrier point, as its name suggests, effectively prevents processes from
proceeding beyond a point until other processes arrive. This gives you a
method for synchronizing the activities of processes. (Note that barriers
can only be applied to entire processes, not to individual threads.)

� An evaluation point lets you programmatically evaluate the state of the pro-
cess or variable when execution reaches a location in the source code.
Evaluation points typically do not stop the process; instead, they per-
form an action.

NOTE Extensive information on action points can be found in the TotalView User’s
Guide.

Each action point is associated with an action point identifier. You use these
identifiers when you need to refer to the action point. Like process and
thread identifiers, action point identifiers are assigned numbers as they are
created. The ID of the first action point created is 1. The second ID is 2, and
so on. These numbers are never reused during a debugging session.

The CLI and TotalView only let you assign one action point to a source code
line. However, neither limits the complexity of an action point.

Stepping
TotalView can step the target by machine instructions or source statements.
If the focus is set to a list with more than one term, all step commands iter-
ate over the list, applying their actions to each term.

The action taken on each arena in the focus list depends on whether the
term is a thread, process, or group width.
Version 4.1 Command Line Interface Guide 35

3
Using the CLI

Stepping
� Thread

The thread of interest is stopped. Stepping a thread is not the same as
stepping the thread’s process. Note that not all systems can step
threads. A width of t tells the CLI that it should just run that thread. In
contrast, a process width (p) tells the CLI that it should run all threads in
the process that are allowed to run while the thread of interest is stepped.

TotalView also allows all manager threads to run.

� Process (default)

The CLI allows the entire process to run, and execution continues until
the thread of interest arrives at its goal location (the next statement, the
next instruction, and such.). It plants a temporary breakpoint at the goal
location for the duration of the command. If another thread reaches the
goal breakpoint first, that thread steps over the temporary breakpoint,
and the process is continued again, until the thread of interest reaches
the goal.

� Group
The CLI examines the group and identifies each process having a thread
stopped at the same location as the thread of interest (a “matching” pro-
cess). TotalView waits until the thread of interest and one thread from
each matching process have all arrived at the action point.

In all cases, if the focus process does not exist before the command is exe-
cuted, TotalView creates the process and then executes the command. The
default arguments for the process are passed to it.
36 Command Line Interface Guide Version 4.1

Version 4.1
Chapter 4
CLI Commands
This chapter contains detailed descriptions of CLI commands.

Command Overview
This section lists all of the CLI commands. It also contains a short explana-
tion of what each command does.

NOTE The parentheses following a command’s name contains the command’s alias.
The command aliases in uppercase letters apply to groups. Not all commands have
aliases.

Environment Commands
The CLI commands in this group provide information on the general CLI
operating environment:

� alias: creates or views user-defined commands.

� capture: allows commands that print information to instead send their
output to a variable.

� dset: changes or views values of CLI state variables.

� dunset: restores default settings of CLI state variables.

� help (he): displays help information.

� stty: sets terminal properties.

� unalias: removes a previously defined command.
Command Line Interface Guide 37

4
CLI Commands
CLI Initialization and Termination
These commands initialize and terminate the CLI session, and add pro-
cesses to CLI control:

� dattach (at): brings one or more processes currently executing in the
normal run-time environment (that is, outside the CLI) under CLI control.

� ddetach (det): detaches the CLI from a process.

� dkill (k): kills existing user processes, leaving debugging information in
place.

� dload (lo): loads debugging information about the target program into
TotalView and prepares it for execution.

� drerun (rr): restarts a process.

� drun (r): starts or restarts the execution of user processes under control
of the CLI.

� dstatus (st, ST): shows current status of processes and threads.

� exit, quit: exits from the CLI, ending the debugging session.

Program Information
The following commands provide information about a program's current
execution location, as well as allow you to browse the program's source
files:

� dassign (as): changes the value of a scalar variable.

� ddown (d): navigates through the call stack by manipulating the current
frame.

� dlist (l): browses source code relative to a particular file, procedure, or
line.

� dprint (p): evaluates an expression or program variable and displays the
resulting value.

� dup (u): navigates through the call stack by manipulating the current
frame.

� dwhat (wh): determines what a name refers to.

� dwhere (w): prints information about the target thread’s stack.
38 Command Line Interface Guide Version 4.1

CLI Commands
Execution Control
The following commands control execution:

� dcont (co, CO): continues execution of processes and waits for them.

� dfocus (f): changes the set of process, threads, or groups upon which a CLI
command acts.

� dgo (g, G): resumes execution of processes (without blocking).

� dhalt (h, H): suspends execution of processes.

� dnext (n, N): executes statements, stepping over subfunctions.

� dnexti (ni, NI): executes machine instructions, stepping over subfunc-
tions.

� dstep (s, S): executes statements, moving into subfunctions if required.

� dstepi (si, SI): executes machine instructions, moving into subfunctions if
required.

� dwait: blocks command input until processes stop.

Action Points

The following action point commands are responsible for defining and
manipulating the points at which the flow of program execution should stop
so that you can examine debugger or program state:

� dactions (ac): views information on action point definitions and their
current status.

� dbreak (b): defines a breakpoint.

� ddelete (de): deletes an action point.

� ddisable (di): temporarily disables an action point.

� denable (en): reenables an action point that has been disabled.

� dwatch (wa): defines a watchpoint.
Version 4.1 Command Line Interface Guide 39

4
CLI Commands

alias
alias Creates or views user-defined commands
Format:

Creates a new user-defined command

alias alias-name defn-body

Views previously defined commands

alias [alias-name]

Arguments:
alias-name The name of the command or command argument

being defined.

defn-body The text that Tcl will substitute when it encounters
alias-name.

Description:
The alias command associates a name you specify with one or more Tcl and
TotalView commands. After you create an alias, you can use it in the same
way as a native TotalView or Tcl command. In addition, you can include an
alias as part of a definition of another alias.

If you do not enter an alias-name argument, the CLI displays the names and
definitions of all aliases. If you specify an alias-name argument, the CLI dis-
plays the definition of the alias.

Because the alias command can contain Tcl commands, you must ensure
that defn-body complies with all Tcl expansion, substitution, and quoting
rules.

TotalView’s global start-up file, tvdinit.tvd, defines a set of default aliases.
All the common commands have one- or two-letter aliases. (You can obtain
a list of these commands by typing alias—being sure not to use an argu-
ment—in the CLI window.)

You cannot use an alias to redefine the name of a CLI-defined command.
You can, however, redefine a built-in CLI command by creating your own Tcl
procedure. For example, here is a procedure that disables the built-in
dwatch command. When a user types dwatch, this code will be executed
instead of the built-in CLI code:
40 Command Line Interface Guide Version 4.1

CLI Commands

alias
proc dwatch {} {
puts “The dwatch command is disabled”

}

The CLI does not parse defn-body (the command’s definition) until it is used.
Thus, you can create aliases that are nonsensical or incorrect. Errors are
only detected when Tcl tries to execute your command.

When you obtain help for a command, the help text includes the com-
mand’s alias.

Examples:
alias nt dnext Defines a command called nt that executes the dnext

command.

alias nt Displays the definition of the nt alias.

alias Displays the definitions of all user-defined commands.

alias m {dlist main}
Defines a command called m that lists the source code
of function main.

alias step2 {dstep; dstep}
Defines a command called step2 that does two dstep
commands in a row. This new command will apply to
the focus current when the command is issued.

alias step2 { s ; s} Creates an alias that performs the same operations as
the one in the previous example. It differs in that it
uses the alias for dstep. Note that you could also cre-
ate an alias that does the same thing as follows: alias
step2 { s 2 }.

alias step1 {f p1. dstep}
Defines a command called step1 that advances all
threads in process 1.
Version 4.1 Command Line Interface Guide 41

4
CLI Commands

capture
capture Assigns a command’s output to a variable
Format:

capture command

Arguments:
command The CLI command (or commands) whose output is

being captured. If you are specifying more than one
command, you must enclose them within braces ({ }).

Description:
The capture command executes command, capturing all output that would
normally go to the console into a string. After command completes, it returns
the string. The capture command lets you obtain the printed output of any
CLI command so that you can assign it to a variable or otherwise manipulate
it. This command is analogous to the UNIX shell’s back-tick feature; that is,
`command`.

Examples:
set save_stat [capture st]

Saves the current process status into a Tcl variable.

set vbl [capture { foreach i { 0 1 2 3 } { p an_array($i)} }]
Saves the printed output of four array elements into a
Tcl variable. Here is some sample output:

int2_array(1) = -8 (0xfff8)
int2_array(2) = -6 (0xfffa)
int2_array(3) = -4 (0xfffc)
int2_array(4) = -2 (0xfffe)

Because capture records all of the information sent to
it by the commands within the braces that follow, you
do not have to use a dlist command.

exec cat << [capture help commands] > cli_help.txt
Writes the help text for all TotalView commands to the
cli_help.txt file.
42 Command Line Interface Guide Version 4.1

CLI Commands

dactions
dactions Displays a list of action points
Format:

dactions [ap-id-list] [–at source-loc] [–enabled | –disabled]

Arguments:
ap-id-list A list of action point identifiers. If you specify action

points, the information displayed is limited to these
points.

If no IDs are entered, TotalView displays information
about all action points in the processes in the focus
set. If one ID is entered, TotalView displays information
for it. If more than one ID is entered, TotalView displays
information for each.

–at source-loc Display the action point at source-loc.

–enabled Indicates that only enabled action points are shown.

–disabled Indicates that only disabled action points are shown.

Command alias:
ac

Description:
The dactions command displays information about action points in the pro-
cesses in the current focus. The information is printed; it is not returned.

This command also lets you obtain the action point identifier. This identifier
is needed when you delete, enable, disable, import, or export action points.

NOTE The identifier is returned when the action point is created. It is also displayed
when the target stops at an action point.

You can include specific action point identifiers as arguments to the com-
mand when detailed information is required. The –enabled and –disabled
options restrict output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file
or before executables are loaded.
Version 4.1 Command Line Interface Guide 43

4
CLI Commands

dactions
Examples:
ac –at arrays.F#56 Displays information about the action point on line 56

of arrays.F. (Notice that this example uses the alias
instead of the full command name.) Here is the output
from this command:

1 action point for process 1:
1 addr=0x100012a8 [arrays.F#56] Enabled

dactions 1 3 Displays information about action points 1 and 3. Here
is some sample output:

2 action points for process 1:
1 addr=0x100012a8 [arrays.F#56] Enabled
3 addr=0x100012c0 [arrays.F#57] Enabled

dfocus p1 dactions Displays information on all action points defined
within process 1.

dfocus p1 dactions –enabled
Displays information on all enabled action points
within process 1.
44 Command Line Interface Guide Version 4.1

CLI Commands

dassign
dassign Changes the value of a scalar variable
Format:

dassign target value

Arguments:
target A variable name referring to a target program scalar

value.

value A source-language expression that evaluates to a sca-
lar value. This expression can use the name of another
variable.

Command alias:
as

Description:
The dassign command evaluates an expression and replaces the value of a
variable with the evaluated result. The target location may be a scalar vari-
able, a dereferenced pointer variable, or an element of an array or structure.

The default focus for dassign is thread. So, if you do not change the focus,
this command acts upon the thread of interest. If the current focus specifies a
width that is wider than t (thread) and is not d (default), dassign iterates
over the threads in the focus set and performs the assignment in each. In
addition, if you use a list with the dfocus command, dassign iterates over
each list member.

The CLI interprets each symbol name in the expression according to the
current context. Because the value of a source variable may not have the
same value across threads and processes, the value assigned can differ in
your threads and processes. If the data type of the resulting value is incom-
patible with that of the target location, you must cast the value into the tar-
get’s type. (Casting is described in Chapter 7 of the TOTALVIEW USER’S GUIDE.)

Here are some things you should know about assigning characters and
strings:

� If you are assigning a character to a target, place the character value within
single quotation marks; for example, ‘c’.

� You can use the standard C language escape character sequences; for
example, \n, \t, and the like. These escape sequences can also be within a
character or string assignment.
Version 4.1 Command Line Interface Guide 45

4
CLI Commands

dassign
� If you are assigning a string to a target, place the string within quotation
marks. However, you must “escape” the quotation marks so they are not
interpreted by Tcl; for example, \”The quick brown fox\”.

If value contains an expression, the expression is evaluated by TotalView’s
expression system. This system is discussed in Chapter 8 of the TOTALVIEW
USER’S GUIDE.

Examples:
dassign scalar_y 102

Stores the value 102 in each occurrence of variable
scalar_y for all processes and threads in the current
set.

f { p1 p2 p3 } as scalar_y 102
Stores the value 102 in each occurrence of variable
scalar_y contained within processes 1, 2, and 3.
46 Command Line Interface Guide Version 4.1

CLI Commands

dattach
dattach Brings currently executing processes under CLI control
Format:

dattach[-g gid] [-r hname] [-e] fname pid-list

Arguments:
-g gid Sets the program control group for the process being

added group gid. This group must already exist. (The
CLI GROUPS variable contains a list of all groups. See
dset on page 80 for more information.)

-r hname The host on which the process is running. The CLI will
launch a TotalView Debugger Server on the host ma-
chine if one is not already running there. Consult the
TOTALVIEW USER GUIDE for information on the launch
command used to start this server.

Setting a host sets it for all PIDs attached to in this
command. If you do not name a host machine, the CLI
uses the local host.

-e Tells the CLI that the next argument is a filename. You
need to use this argument if the filename begins with a
dash or only uses numeric characters.

fname The name of the executable. Setting an executable
here, sets it for all PIDs being attached to in this com-
mand. If you do not include this argument, the CLI tries
to determine the executable file from the target pro-
cess. Some architectures do not allow this to occur.

pid-list A list of system-level process identifiers (such as a
UNIX PID) naming the processes that TotalView will
control. All PIDs must reside on the same system and
they will all be placed into the same program group.

If you need to place the processes in different groups
or attach to processes on more than one system, you
must use multiple dattach commands.

Command alias:
at

Description:
The dattach command tells TotalView to attach to one or more processes,
making it possible to continue process execution under CLI control.
Version 4.1 Command Line Interface Guide 47

4
CLI Commands

dattach
This command returns the TotalView process ID (PID) as a string value. If you
specify more than one process in a command, dattach returns a list of PIDs
instead of a single value.

All processes attached to in one dattach command are placed in the same
program group. This allows you to place all processes in a multiprocess pro-
gram executing on the same system in the same program group.

If a target program has more than one executable, you must use a separate
dattach for each.

If the fname executable is not already loaded, the CLI searches for it. The
search will include all directories in the EXECUTABLE_PATH CLI state vari-
able.

The process identifiers specified in the pid-list must refer to existing pro-
cesses in the run-time environment. TotalView attaches to the processes,
regardless of their execution states.

Examples:
dattach mysys 10020

Loads debugging information for mysys and brings the
process known to the run-time system by PID 10020
under CLI control.

dattach -e 123 10020
Loads file 123 and brings the process known to the
run-time system by PID 10020 under CLI control.

dattach -g 4 -r Enterprise myfile 10020
Loads myfile that is executing on the host named
Enterprise into group 4 and brings the process known
to the run-time system by PID 10020 under CLI con-
trol. If a TotalView Debugger Server (tvdsvr) is not run-
ning on Enterprise, the CLI will start it.

dattach my_file 51172 52006
Loads debugging information for my_file and brings
the processes corresponding to PIDs 51172 and 52006
under CLI control.
48 Command Line Interface Guide Version 4.1

CLI Commands

dattach
set new_pid [dattach -e mainprog 123]
dattach -r otherhost -g $CGROUP($new_pid) -e slaveprog 456

Begins by attaching to mainprog running on the local
host. It then attaches to slaveprog running on other-
host and inserts them both in the same program con-
trol group.
Version 4.1 Command Line Interface Guide 49

4
CLI Commands

dbreak
dbreak Defines a breakpoint
Format:

Creates a breakpoint at a source location

dbreak source-loc [–p | –g] [[–l lang] –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g] [[–l lang] –e expr]

Arguments:
source-loc The breakpoint location specified as a line number or

as a string containing a file name, function name, and
line number, each separated by # characters; for
example, #file#line. Defaults are constructed if you
omit parts of this three-part specification. For more
information, see “Qualifying Symbol Names” on
page 24.

–address addr The breakpoint location specified as an absolute
address in the address space of the target program.

–p Tells TotalView to stop the process that hit this break-
point.

–g Tells TotalView to stop all processes in the process’s
program group when the breakpoint is hit. (This is nor-
mally the default. However, you can change the default
by setting the STOP_ALL state variable. See dset on
page 80 for more information.)

–l lang Sets the programming language used when you are
entering expression expr. The languages you can enter
are c c++, f7, f9, and asm (for C, C++, FORTRAN 77,
Fortran 9x, and assembler). If you do not specify a lan-
guage, TotalView assumes that you wrote the expres-
sion in the same language as the routine at the
breakpoint. Note that not all languages are supported
on all systems.

–e expr When the breakpoint is hit, tells TotalView to evaluate
expression expr in the context of the thread that hit the
breakpoint. The language statements and operators
you can use are described in the TOTALVIEW USER’S
GUIDE.
50 Command Line Interface Guide Version 4.1

CLI Commands

dbreak
Command alias:
b

Description:
The dbreak command defines a breakpoint or evaluation point that is trig-
gered when execution arrives at the specified location. The ID of the new
breakpoint is returned.

Each thread stops when it arrives at a breakpoint, where it is held until a
resume command is issued. The resume commands (dstep, dgo, and the
like) tell the held thread to continue executing.

Specifying a procedure name without a line number tells the CLI to set an
action point at the beginning of the procedure. If you do not specify a file,
the default is the file associated with the current source location.

The CLI may not be able to set a breakpoint at the line you specify. This is
because the compiler may not generate the information that the CLI needs.
This may happen, for example, if a line does not contain an executable
statement or if the line numbers generated by the compiler span source
lines.

If you try to set a breakpoint on a line at which the CLI cannot stop execu-
tion, it sets one at the nearest following line where it can halt execution.

When the CLI displays information on a breakpoint’s status, it displays the
location where execution will actually stop.

If the CLI encounters a stop group breakpoint, it suspends each process in the
group as well as the processes containing the triggering threads. The CLI
then shows the identifier of the triggering thread, the breakpoint location,
and the action point identifier.

One possibly confusing aspect of using expressions is that their syntax dif-
fers from that of Tcl. This is because you will need to embed code written in
Fortran, C, or assembler within Tcl commands. In addition, your expressions
will often include TotalView intrinsic functions.
Version 4.1 Command Line Interface Guide 51

4
CLI Commands

dbreak
Examples:
For all examples, assume the current process set is d2.< when the break-
point is defined.

dbreak 12 Suspends process 2 when it reaches line 12. However,
if the STOP_ALL state variable is set to true, all other
processes in the group are stopped. In addition, if you
have set the SHARE_ACTION_POINT state variable to
true, the breakpoint is placed in every process in the
group

dbreak –address 0x1000764
Suspends process 2 when address 0x1000764 is
reached.

b 12 –g Suspends all processes in the current process group
when line 12 is reached.

dbreak 57 –l f9 –e { goto $63 }
Causes the thread that struck the breakpoint to trans-
fer to line 63. The host language for this statement is
Fortran 90 or Fortran 95.

dfocus p3 b 57 –e { goto $63 }
In process 3, sets the same evaluation point as the
previous example.
52 Command Line Interface Guide Version 4.1

CLI Commands

dcont
dcont Continues execution of processes and waits for them
Format:

dcont [–waitany]

Arguments:
–waitany Blocks execution until a process in the target set

stops. This option is not needed if you are debugging a
multiprocess program.

Command alias:
co
CO

Description:
The dcont command continues all processes and threads in the current
focus and then waits for them to stop. The CO command is an alias for
dfocus g dcont, and acts as a group-resume command.

This command is defined as follows:

proc dcont { args } { uplevel “dgo; dwait $args“}

If you add the –waitany option, this command blocks until some process,
not the whole collection, stops.

The dcont command alters program state by changing the state of all pro-
cesses in the affected set to running. Only threads that are currently in the
stopped/runnable state can actually be changed in this way. Program state is
unaffected for any threads that are already running or held at a barrier.

A dcont command completes when all threads in the appropriate processes
have stopped executing (that is, none of them is in the running state).

Examples:
dcont Resumes execution of all stopped/runnable threads

belonging to processes in the current focus. (Threads
held at barriers are not affected.) The command blocks
further input until all threads in all target processes
stop. When the prompt is displayed, you can enter
additional commands.

dfocus p1 dcont Resumes execution of all stopped/runnable threads
belonging to process 1. Command input is blocked
until the process stops.
Version 4.1 Command Line Interface Guide 53

4
CLI Commands

dcont
dfocus {p1 p2 p3} co –waitany
Resumes execution of all stopped/runnable threads
belonging to processes 1, 2, and 3, blocking further
command input until at least one process stops.

CO –waitany Resumes execution of all stopped/runnable threads
belonging to the current group, blocking further com-
mand input until at least one process stops.
54 Command Line Interface Guide Version 4.1

CLI Commands

ddelete
ddelete Deletes action points
Format:

Deletes the listed action points

ddelete action-point-list

Deletes all action points

ddelete –a

Arguments:
action-point-list A list of the action points being deleted.

–a Tells TotalView to delete all action points.

Command alias:
de

Description:
The ddelete command permanently removes one or more action points.
The argument to this command can name the action points being deleted.
The –a option indicates that the CLI should delete all action points.

The ddelete command affects CLI state by removing all information about
the deleted action points. It does not directly affect program state unless
the specified action point is a barrier; in this case, the state of processes in
a held target set is changed from stopped/held to stopped/runnable.

Examples:
ddelete 1 2 3 Deletes breakpoints 1, 2, and 3.

ddelete –a Deletes all action points associated with processes in
the target focus.

dfocus {p1 p2 p3 p4} ddelete –a
Deletes all of the breakpoints associated with pro-
cesses 1 through 4. Breakpoints associated with other
threads are not affected.

dfocus a de –a Deletes all action points known to the CLI.
Version 4.1 Command Line Interface Guide 55

4
CLI Commands

ddetach
ddetach Detaches from processes
Format:

ddetach

Command alias:
det

Description:
The ddetach command detaches the CLI from all processes in the current
focus. This undoes the effects of attaching the CLI to a running process; that
is, the CLI releases all control over the process, eliminates all debugger state
information related to it (including action points), and allows the process to
continue executing in the normal run-time environment.

You can detach any process controlled by the CLI; the process being
detached does not have to be originally loaded with a dattach command.

After this command executes, you are no longer able to access program
variables, source location, action point settings, or other information
related to the detached process.

If a single thread serves as the target set, the CLI detaches the process con-
taining the thread.

Examples:
ddetach Detaches the process or processes that are in the cur-

rent focus.

dfocus {p4 p5 p6} det
Detaches processes 4, 5, and 6.

dfocus g2 det Detaches all processes in the program group associ-
ated with process 2.
56 Command Line Interface Guide Version 4.1

CLI Commands

ddisable
ddisable Temporarily disables action points
Format:

Disables specific action points

ddisable action-point-list

Disables all action points

ddisable –a

Arguments:
action-point-list A list of action points being disabled.

–a Tells TotalView to disable all action points.

Command alias:
di

Description:
The ddisable command temporarily deactivates action points; it does not,
however, delete them.

The first form of this command lets you explicitly name the IDs of the action
points being disabled. The second form lets you disable all action points.

The ddisable command affects CLI state by disabling the corresponding
action points. It has no effect on program state.

Examples:
ddisable 3 7 Disables the action points whose IDs are 3 and 7.

di -a Disables all action points in the current focus.

dfocus {p1 p2 p3 p4} ddisable –a
Disables action points associated with processes 1
through 4. Action points associated with other pro-
cesses are not affected.
Version 4.1 Command Line Interface Guide 57

4
CLI Commands

ddown
ddown Moves down the call stack
Format:

ddown [num-levels]

Arguments:
num-levels Number of levels to move down. The default is 1.

Command alias:
d

Description:
The ddown command moves the selected stack frame down one or more
levels. It also prints the new frame’s number and function name.

Call stack movements are all relative, so ddown effectively “moves down”
in the call stack. (If “up” is in the direction of main(), then “down” is back
from where you started moving through stack frames.)

Frame 0 is the most recent—that is, currently executing—frame in the call
stack, frame 1 corresponds to the procedure that invoked the currently exe-
cuting one, and so on. The call stack’s depth is increased by one each time
a procedure is entered, and decreased by one when it is exited.

The command affects each thread in the target focus. Any collection of pro-
cesses and threads can be specified as the target set.

In addition, the ddown command modifies the current list location to be
the current execution location for the new frame; this means that a dlist
command displays the code surrounding this new location.

The context and scope changes made by this command remain in effect
until the CLI executes a command that modifies the current execution loca-
tion (for example, dstep), or until you enter a dup or ddown command.

If you tell the CLI to move down more levels than exist, the CLI simply moves
down to the lowest level in the stack (which was the place where you began
moving through the stack frames).
58 Command Line Interface Guide Version 4.1

CLI Commands

ddown
Examples:
ddown Moves down one level in the call stack. As a result, for

example, dlist commands that follow will refer to the
procedure that invoked this one. Here is an example of
what is printed after you enter this command:

0 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

d 5 Moves the current frame down five levels in the call
stack.
Version 4.1 Command Line Interface Guide 59

4
CLI Commands

denable
denable Reenables action points
Format:

Reenables specific action points

denable action-point-list

Reenables all disabled action points in the current focus

denable –a

Arguments:
action-point-list The identifiers of the action points being enabled.

–a Tells TotalView to enable all action points.

Command alias:
en

Description:
The denable command reactivates action points that were previously dis-
abled. The –a option tells the CLI to enable all action points in the current
focus.

The easiest way of knowing what these IDs are is to retain the value returned
by the dbreak command or extract them from the dactions command.

Examples:
denable 3 4 Enables two previously identified action points. These

action points were previously disabled with the
ddisable command.

dfocus {p1 p2} denable –a
Enables all action points associated with processes 1
and 2. Settings associated with other processes are
not affected.

en –a Enables all action points associated with the current
focus.

f a en –a Enables all actions points in all processes.
60 Command Line Interface Guide Version 4.1

CLI Commands

dfocus
dfocus Changes the current Process/Thread set
Format:

Changes the target of CLI commands to this P/T set

dfocus p/t-set

Executes a command within this P/T set

dfocus p/t-set command

Arguments:
p/t-set A set of processes, threads, and arenas. This set

defines the target upon which CLI commands will act.

command A CLI command, which when it executes, operates
upon its own local focus.

Command alias:
f

Description:
The dfocus command changes the set of processes, threads, and groups
upon which a command will act. This command can change the focus for all
commands that follow or just the command that immediately follows.

The dfocus command always expects a P/T value as its first argument. This
value can either be a single arena specifier or a list of arena specifiers. The
default focus is d1.<, which selects the first user thread. The d (for default)
indicates that each CLI command is free to use its own default width.

If you enter an optional command, the focus is set temporarily, and command
is executed in the new focus. After command executes, the focus is restored
to its original value. command may be a single command or a list.

If you use a command argument, dfocus returns the result of the command.
If you do not enter a command, dfocus returns the focus as a string value.

The dfocus command affects CLI state by replacing the processes and
threads previously used as the current set, with those specified in the argu-
ment. It does not affect program state in any way.
Version 4.1 Command Line Interface Guide 61

4
CLI Commands

dfocus
Examples:
dfocus g dgo Continues the TotalView group containing the focus

process.

dfocus p3 { dhalt ; dwhere }
Stops process 3 and displays backtraces for each of its
threads.

dfocus 2.3 Sets the focus to thread 3 of process 2, where the “2”
and the “3” are TotalView’s process and thread identi-
fier values. The focus is set to d2.3.

dfocus 3.2
dfocus .5 Sets, then resets command focus. A focus command

that includes a dot and omits the process value tells
the CLI to use the current process. Thus, this sequence
of commands changes the focus to process 3, thread 5
(d3.5).

dfocus g dstep Steps the current group. Note that while the thread of
interest is determined by the current focus, the com-
mand acts upon the entire group containing that
thread.

dfocus {p2 p3} {dwhere ; dgo}
Performs a backtrace on all threads in processes 2 and
3 and then continues the processes.

f 2.3 { f p w ; f t s ; g }
Executes a backtrace on all the threads in process 2,
steps thread 3 in process 2 (without running any other
threads in the process), and continues the process.

dfocus p1 Changes the current focus to include just those
threads currently in process 1.

dfocus a Changes the current set to include all threads in all
processes. When you execute this command, you will
notice that your prompt changes to a1.<. This com-
mand alters the CLI’s behavior so that actions that
previously operated on a thread now apply to all
threads in all processes.
62 Command Line Interface Guide Version 4.1

CLI Commands

dgo
dgo Resumes execution of target processes
Format:

dgo

Command alias:
g
G

Description:
The dgo command continues all processes and threads in the current focus.
If a target process does not exist, this command creates it, passing it the
default command arguments. The G command is an alias for dfocus g dgo,
and acts as a group-resume command.

This command has no arguments.

The dgo command alters program state by changing the state of all pro-
cesses in the affected set to running. Only threads that are currently in the
stopped/runnable state can actually be changed in this way, however. Program
state is unaffected for any threads that are already running, held at a barrier,
and so on.

A dgo command cannot be applied when you are debugging a core file, nor
can you use it before the CLI loads an executable and starts executing it.

Examples:
dgo Resumes execution of all stopped/runnable threads

belonging to processes in the current focus. (Threads
held at barriers are not affected.)

G Resumes execution of all threads in the current pro-
cess group.
Version 4.1 Command Line Interface Guide 63

4
CLI Commands

dhalt
dhalt Suspends execution of target processes
Format:

dhalt

Command alias:
h
H

Description:
The dhalt command stops all processes and threads in the current focus.
The H command is an alias for dfocus g dhalt, and acts as a group-stop
command.

The command has no arguments.

The dhalt command alters program state by changing the state of all pro-
cesses in the affected set to stopped/runnable. Only threads that are currently
in the running state can actually be halted, however. Program state is not
altered for any threads that are already stopped, held at a barrier, and so on.

Examples:
dhalt Suspends execution of all running threads belonging to

processes in the current focus. (Threads that are held
at barriers are not affected.)

f 1.1 h Suspends execution of thread 1 in process 1. Note the
difference between this command and f 1.< dhalt. If
the focus is set as thread-level, this command will halt
the first user thread, which is probably thread 1.
64 Command Line Interface Guide Version 4.1

CLI Commands

dkill
dkill Terminates execution of target processes
Format:

dkill

Command alias:
k

Description:
The dkill command terminates all target processes in the current focus.

This command has no arguments.

Because the executables associated with the defined processes are still
“loaded,” typing the drun command restarts the processes.

The dkill command alters program state by terminating all processes in the
affected set. In addition, TotalView destroys any spawned processes when
the process that created them is killed. Only the initial process can be
restarted by using the drun command.

Examples:
dkill Terminates all threads belonging to processes in the

current focus.

dfocus {p1 p3} dkill
Terminates all threads belonging to processes 1 and 3.
Version 4.1 Command Line Interface Guide 65

4
CLI Commands

dlist
dlist Displays source code lines
Format:

Displays code relative to the current list location

dlist [–n num-lines]

Displays code relative to a named place

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

Arguments:
–n num-lines Requests that this number of lines be displayed rather

than the default value. (The default is the value of the
MAX_LIST variable.) If num-lines is negative, lines
before the source display location are shown, and
additional dlist commands will show preceding lines in
the file rather than succeeding lines. For more informa-
tion, see “dset” on page 80.

This option also sets the value of the MAX_LIST vari-
able to num-lines.

source-loc Sets the location at which the CLI begins displaying
information. This location is specified as a line number
or as a string containing a file name, function name,
and line number, each separated by # characters. For
example: #file#func#line. For more information, see
“Qualifying Symbol Names” on page 24. Defaults are
constructed if you omit parts of this specification.

–e Sets the source display location to include the current
execution point of the thread of interest. If you used
dup and ddown commands to select a buried stack
frame, this location includes the PC (program counter)
for that stack frame.

Command alias:
l

Description:
The dlist command displays lines relative to a place in the source code.
(This place is called the source display location.) This information is printed; it
66 Command Line Interface Guide Version 4.1

CLI Commands

dlist
is not returned. If neither source-loc nor –e is specified, the command contin-
ues where the previous list command left off. If a new file or function name
is specified (not just a new line number), the source display location setting
is remembered; setting the focus to a different thread will not change it. To
display the thread’s execution point, use dlist –e.

When a file or procedure is named, the listing begins at the file or proce-
dure’s first line.

The first time you use the dlist command after you focus on a different
thread—or after the focus thread runs and stops again—the source display
location changes to include the current execution point of the new focus
thread.

Tabs in the source file are expanded as blanks in the output. The tab stop
width is controlled by the TAB_WIDTH variable, which has a default value of
8. If TAB_WIDTH is set to -1, no tab processing is done, and tabs are dis-
played using their ASCII value.

All lines are shown with a line number and the source text for the line. The
following symbols are also used:

@ An action point is set at this line.

> The PC for the current stack frame is at the indicated line and this is
the leaf frame.

= The PC for the current stack frame is at the indicated line and this is
a buried frame.

These correspond to the marks shown in the backtrace displayed by
dwhere that indicates the selected frame.

Here are some general rules:

� The initial current list location is main().

� The current list location is per thread.

� The current list location is set to the current execution location when a
thread stops.

If the source-loc argument is not fully qualified, the CLI looks for it in the direc-
tories named in the CLI EXECUTABLE_PATH state variable.
Version 4.1 Command Line Interface Guide 67

4
CLI Commands

dlist
When you do use a procedure name without also using the –n option, the
CLI displays the entire procedure.

This command has no effect on program state.

Examples:
These examples assume that MAX_LIST is at its initial value of 20.

dlist Displays 20 lines of source code, beginning at the cur-
rent list location. The list location is incremented by 20
when the command completes.

dlist 10 If this command is executed after the previous exam-
ple, displays 10 lines, starting with line 20 of the file
corresponding to the current list location (that is, 10
lines before the current location). The list location is
changed to line 30.

dlist –n 10 Displays 10 lines, starting with the current list location.
The value of the list location is incremented by 10.

dlist –n -50 Displays source code preceding the current list loca-
tion; 50 lines are shown, ending with the current
source code location. The list location is decremented
by 50.

dlist #do_it Displays all source code lines for procedure do_it. The
list location is changed so that it is the first line follow-
ing the end of the procedure.

dfocus 2.< dlist #do_it
Displays all source code lines for the routine do_it
associated with process 2. If the current source file
were named foo, this could also be specified as dlist
#foo#do_it, naming the executable for process 2.

dlist –e Displays 20 lines starting 10 lines above the current
execution location. If more than one location is cur-
rent for the target set, the CLI chooses the one it
thinks you will be most interested in. The list location
is updated to that line plus 20.

f 1.2 l –e Starts the display at the current execution location of
thread 2 in process 1.
68 Command Line Interface Guide Version 4.1

CLI Commands

dlist
dfocus 1.2 dlist –e –n 10
Produces essentially the same listing as the previous
example, differing in that 10 lines are displayed.

dlist #do_it.f#80 –n 10
Displays 10 lines, starting with line 80 in file do_it.f.
The list location is updated to line 90.
Version 4.1 Command Line Interface Guide 69

4
CLI Commands

dload
dload Loads debugging information
Format:

dload [-g gid] [-r hname] [-e] executable

Arguments:
-g gid Sets the program control group for the process being

added to group gid. This group must already exist. (The
CLI GROUPS variable contains a list of all groups.)

-r hname The host on which the process is running. The CLI will
launch a TotalView Debugger Server on the host ma-
chine if one is not already running there. Consult the
TOTALVIEW USER GUIDE for information on the launch
command used to start this server.

-e Tells the CLI that the next argument is a filename. You
need to use this argument if the filename begins with a
dash or only uses numeric characters.

executable A fully or partially qualified file name for file corre-
sponding to the target program.

Command alias:
lo

Description:
The dload command creates a new TotalView process object for executable.
You will actually create the process by using the drun on page 78 or drerun
on page 77 commands. (The descriptions for these commands explain how
the CLI passes arguments to a process when it is launched.) The dload com-
mand returns the TotalView ID for the new object.

Examples:
dload do_this Loads the debugging information for executable

do_this into the CLI. After this command completes,
the target process does not yet exist and no address
space or memory is allocated to it.

lo -g 3 -r other_computer do_this
Loads the debugging information for executable
do_this on the other_computer machine into the CLI.
This process is placed into group 3.
70 Command Line Interface Guide Version 4.1

CLI Commands

dload
f g3 lo -r other_computer do_this
Does not do what you would expect it to do because
the dload command ignores the focus command. You
should note that this group 3 refers to the debugger ID
while the 3 in the previous example refers to the group
whose GID is 3.
Version 4.1 Command Line Interface Guide 71

4
CLI Commands

dnext
dnext Steps source lines, stepping over subroutines
Format:

dnext [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of source lines to be executed.

Command alias:
n
N

Description:
The dnext command executes source lines; that is, it advances the program
by steps (source line statements). However, if a statement in a source line
invokes a subfunction, dnext executes the subfunction as if it were one
statement; that is, it steps over the call.

The N command is an alias for dfocus g dnext, and acts as a group-step
command.

The optional num-steps argument tells the CLI how many dnext operations it
should perform. If you do not specify num-steps, the default is 1.

The dnext command iterates over the arenas in its focus set, performing a
thread-level, process-level, or group-level step in each arena, depending on
the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see “dstep” on
page 86.

Examples:
dnext Steps one source line.

n 10 Steps ten source line.

N Steps the entire group one source line.

f t n Steps the entire thread.

dfocus 3. dnext Steps process 3 one step.
72 Command Line Interface Guide Version 4.1

CLI Commands

dnexti
dnexti Steps machine instructions, stepping over subroutines
Format:

dnexti [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of instructions to be executed.

Command alias:
ni
NI

Description:
The dnexti command executes machine-level instructions; that is, it
advances the program by steps (instructions). However, if the instruction
invokes a subfunction, dnexti executes the subfunction as if it were one
instruction; that is, it steps over the call.

The NI command is an alias for dfocus g dnexti, and acts as a group-step
command.

The optional num-steps argument tells the CLI how many dnexti operations
it should perform. If you do not specify num-steps, the default is 1.

The dnexti command iterates over the arenas in the focus set, performing a
thread-level, process-level, or group-level steps in each arena, depending
on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on
page 86.

Examples:
dnexti Steps one machine-level instruction.

ni 10 Steps ten machine-level instructions.

NI Steps the entire group one machine-level instruction.

f t n Steps the entire thread one machine-level instruction.

dfocus 3. dnexti Steps process 3 one machine-level instruction.
Version 4.1 Command Line Interface Guide 73

4
CLI Commands

dprint
dprint Evaluates and displays information
Format:

Prints the value of a variable

dprint variable

Prints the value of an expression

dprint expression

Arguments:
variable A variable whose value will be displayed. The variable

argument can be local to the current stack frame or a
global.

expression A source-language expression to be evaluated and
printed. Because expression must also conform to Tcl
syntax, you must place it within quotes if it includes
any blanks, and it must be enclosed in braces ({}) if it
includes square brackets ([]), dollar signs ($), quote
characters ("), or any other Tcl special characters.

expression cannot contain calls to assembler, Fortran, C,
or C++ functions.

Command alias:
p

Description:
The dprint command evaluates and displays a variable or an expression.
The CLI interprets the expression by looking up the values associated with
each symbol and applying the operators. The result of an expression can be
a scalar value or an aggregate (array, array slice, or structure).

As the CLI displays data, it passes the data through a simple more process
that prompts you after each screen of text is displayed. After a screen of
data is displayed, you can press the Enter key to tell the CLI to continue dis-
playing information. Typing q tells the CLI to stop printing this information.

The dprint command has no effect on program state or CLI state.

Since a considerable amount of output can be generated, you may want to
use the capture command described on page 42 to save the output into a
variable.
74 Command Line Interface Guide Version 4.1

CLI Commands

dprint
Structure output appears with one field printed per line. For example:

sbfo = {
 f3 = 0x03 (3)
 f4 = 0x04 (4)
 f5 = 0x05 (5)
 f20 = 0x000014 (20)
 f32 = 0x00000020 (32)
 }

Arrays are printed in a similar manner. For example:

foo = {
 [0][0] = 0x00000000 (0)
 [0][1] = 0x00000004 (4)
 [1][0] = 0x00000001 (1)
 [1][1] = 0x00000005 (5)
 [2][0] = 0x00000002 (2)
 [2][1] = 0x00000006 (6)
 [3][0] = 0x00000003 (3)
 [3][1] = 0x00000007 (7)
 }

Each expression is evaluated in the context of each thread in the target
focus. Thus, the overall format of dprint output is as follows:

first process/thread group:
expression result

second process/thread group:
expression result

...

last process/thread group:
expression result

Examples:
dprint scalar_y Displays the values of variable scalar_y within all pro-

cesses and threads in the current set.

p argc Displays the value of argc.

p argv Displays the value of argv, along with the first string to
which it points.
Version 4.1 Command Line Interface Guide 75

4
CLI Commands

dprint
p { argv[argc-1]} Prints the value of argv[argc-1]. If the execution point
is in main(), this is the last argument passed to main().

dfocus p1 dprint scalar_y
Displays the values of variable scalar_y for the threads
in process 1.

f 1.2 p arrayx Displays the values of the array arrayx for just the sec-
ond thread in process 1.

for {set i 0} {$i < 100} {incr i} {p argv\[$i\]}
If main() is in the current scope, prints the program’s
arguments followed by the program’s environment
strings.
76 Command Line Interface Guide Version 4.1

CLI Commands

drerun
drerun Restarts processes
Format:

drerun [args]

Arguments:
args The arguments to be used for restarting a process.

Command alias:
rr

Description:
The drerun command restarts the process that is in the current focus set
from its beginning. drerun uses the arguments stored in the ARGS and
ARGS_DEFAULT state variables. These are set every time the process is run
with different arguments. Consequently, if you do not specify the arguments
to be used when restarting the process, the CLI uses the arguments speci-
fied when the process was previously run. (See drun on page 78 for more
information.)

The dererun command differs from the drun command in that

� If you do not specify an argument, drerun uses the default values. In
contrast, the drun command clears the argument list for the program.
This means that you cannot use an empty argument list with the drerun
command to tell the CLI to restart a process and expect that no
arguments will be used.

� If the process already exists, drun will not restart it. (If you must the drun
command, you must first kill the process.) In contrast, the drerun
command will kill and then restart the process.

Examples:
drerun Reruns the current process. Because arguments are

not used, the process is restarted using its previous
values.

rr –firstArg an_argument –aSecondArg a_second_argument
Reruns the current process. The default arguments are
not used because replacement arguments are speci-
fied.
Version 4.1 Command Line Interface Guide 77

4
CLI Commands

drun
drun Starts or restarts processes
Format:

drun [cmd_arguments] [< infile] [> outfile]

Arguments:
cmd_arguments The argument list passed to the process.

infile If specified, indicates a file from which the CLI will read
information.

outfile If specified, indicates the file into which the CLI will
write information.

Command alias:
r

Description:
The drun command launches each process in the current focus and starts
it running. The command arguments are passed to the processes, and I/O
redirection for the target program, if specified, will occur. Later in the ses-
sion, you can use the drerun command to restart the program.

In addition, the CLI uses the following state variables to hold the “default”
argument list for the processes.

ARGS_DEFAULT The CLI sets this variable if you use the –a option when
you started the CLI or TotalView. (This option passes
command lines arguments that TotalView will use when
it invokes a process.) It holds the default arguments
that are passed to a process when the process has no
default arguments of its own.

ARGS(n) The command-line arguments are stored in this array
variable. The index to locations within the array is the
process ID n. This variable has a process’s default
arguments. It is always set by the drun command, and
it is also set by the drerun command when it is used
with arguments.

If more than one process is launched with a single drun command, each
receives the same command-line arguments.
78 Command Line Interface Guide Version 4.1

CLI Commands

drun
In addition to setting these variables by using the –a option or specifying
cmd_arguments when you use this or the drerun command, you can modify
these variables directly with the dset and dunset commands.

A reissued drun command can only be applied to initial processes, not to
processes that were spawned by the target program. Further, each initial
process must be terminated; if a process is not terminated, you are told to
kill it and retry. (You can, of course, use the rerun command.)

The first time the drun command is issued, arguments are copied to pro-
gram variables, and any I/O redirection is initiated. When the command is
reissued for processes that were started previously—or issued for the first
time for a process that was attached using the dattach command—the CLI
reinitializes your program.

Debugging information includes information about the symbol table,
dynamic linking, compiler optimizations, and so on. TotalView uses this
information to initialize CLI state, machine state, and (indirectly) program
state.

Examples:
drun Tells the CLI to begin executing all threads belonging

to processes represented in the current focus.

f {p2 p3} drun Begins execution of all threads in processes 2 and 3.

f 4.2 r Begins execution of all threads belonging to process 4.
Note that this might be the same as f p4 drun if the
current focus is set to default (d) or process (p) width.

dfocus a drun Restarts execution of all threads known to the CLI. If
they were not previously killed, you are told to use the
dkill command and then try again.

drun < in.txt Restarts execution of all threads in the current focus,
setting them up to get standard input from file in.txt.
Version 4.1 Command Line Interface Guide 79

4
CLI Commands

dset
dset Changes or views CLI state variables
Format:

Changes a CLI state variable

dset debugger-var value

Views current CLI state variables

dset [debugger-var]

Arguments:
debugger-var Name of a CLI state variable.

value Value to be assigned to debugger-var.

Description:
The dset command sets the value of CLI debugger variables.

When no arguments are specified, dset displays the names and current val-
ues for all TotalView CLI state variables. If you use only one argument, the
CLI returns and displays the variable’s value.

The second argument defines the value that will replace a variable’s previ-
ous value. It must be enclosed in quotes if it contains more than one word.

The state variables are

ARGS(n) An array that contains the arguments used when a pro-
cess is started.

ARGS_DEFAULT Contains the default arguments used when a process
is started.

BARRIER_STOP_ALL
Contains the default value for the STOP_ALL variable
on newly created barrier points. If this variable is set to
true, it indicates the CLI will stop all group members
when one process hits the barrier. If it is false, the CLI
lets the other processes continue to run.

CGROUP(dpid) Contains the program control group for the process
with the TotalView ID dpid. Setting this variable moves
process dpid into a different control group. For exam-
ple, the following command moves process 3 into the
same group as process 1:

dset CGROUP(3) $CGROUP(1)
80 Command Line Interface Guide Version 4.1

CLI Commands

dset
EXECUTABLE_PATH
Has a list containing the directories that the CLI
searches when it looks for source and executable files.

GROUP(gid) Contains a list containing the TotalView IDs for all
members in group gid. The first element indicates what
kind of group it is and can be:

GROUPS Contains a list containing the IDs for all groups in
TotalView.

LINES_PER_SCREEN
Defines the number of lines shown before the CLI
stops printing information and displays its more
prompt. The following values have special meaning:

MAX_LIST Defines the number of lines displayed in response to a
dlist command.

PROMPT Defines the CLI prompt. If you are including a variable
or a value returned from a function in the prompt, be
sure to enclose it within brackets ([]) so that the Tcl
interpreter knows to substitute the returned value.

PTSET Defines the current focus.

SHARE_ACTION_POINT
Contains the default value for TotalView’s internal
share_in_group flag for newly created action points. If
this value is true, an action point will be active across
the group. If it is false, an action point will be only
active in the process upon which it is set.

control Program control group
share Breakpoint share group

0 No more processing occurs, and the printing
does not stop when the screen fills with
data.

NONE This is a synonym for 0.
AUTO The CLI uses the tty settings to determine

the number of lines to display. This may not
work in all cases. For example Emacs sets
the tty value to 0. If AUTO works improp-
erly, you will need to explicitly set a value.
Version 4.1 Command Line Interface Guide 81

4
CLI Commands

dset
This variable affects the default width of the arenas the
CLI uses in setting action points. For example, if the
arena width is d, it controls whether the CLI will set a
group or process action point.

STOP_ALL Controls the default value for the –p and –g options to
the dbreak and dwatch commands. If this variable is
set to true, the CLI assumes that you are setting a
group action point when you omit these options. If you
set it to false, the CLI assumes that you are setting a
process action point.

TAB_WIDTH Indicates the number of spaces used to simulate a tab
character when the CLI displays information.

TOTALVIEW_ROOT_PATH
Names the directory in which the TotalView executable
is located.

TOTALVIEW_TCLLIB_PATH
Contains a list containing the directories that the CLI
searches for TCL library components.

TOTALVIEW_VERSION
Contains the version number and the type of computer
architecture upon which TotalView is executing.

VERBOSE Controls the error message information displayed by
the CLI. The values that this variable can take are as
follows:

INFO Prints error, warnings, and informational
messages. Informational message include
data on dynamic libraries and symbols.

WARNING Only print errors and warnings.
ERROR Only print error messages.
SILENT Do not print error, warning, and informa-

tional messages. This also shuts off the
printing of results from CLI commands.
Because no information is printed, this
should only be used when running the CLI
in batch mode.
82 Command Line Interface Guide Version 4.1

CLI Commands

dset
The following table lists the default and permitted values for all CLI vari-
ables:

TABLE 2: Defaults and Permitted Values for CLI Variables

Debugger Variable Permitted Values Default

ARGS A string none

ARGS_DEFAULT A number none

BARRIER_STOP_ALL True or false true

CGROUP A number none

EXECUTABLE_PATH Any valid directory or direc-
tory path; to include the cur-
rent setting, use
$EXECUTABLE_PATH

./:$PATH

GROUP A Tcl list; each list element
has two components: the
group type and the group ID

This is a readonly value and
cannot be set

none

GROUPS A Tcl list of IDs; this is a read-
only value and cannot be set

none

LINES_PER_SCREEN A positive integer, or the
AUTO or NONE values

AUTO

MAX_LIST A positive integer 20

PROMPT Any string. If you wish to
access the value of PTSET,
you must place the variable
within braces; that is, [dset
PTSET]

{[dfocus]> }

PTSET This is a read-only value and
cannot be set

d1.<

SHARE_ACTION_POINT True or false true

STOP_ALL True or false true
Version 4.1 Command Line Interface Guide 83

4
CLI Commands

dset
Examples:
dset PROMPT "Fixme% "

Sets the prompt to be Fixme% followed by a space.

dset Displays all CLI state variables and their current set-
tings.

dset VERBOSE Displays the current setting for output verbosity.

dset EXECUTABLE_PATH ../test_dir;$EXECUTABLE_PATH
Places ../test_dir at the beginning of the previous value
for the executable path.

TAB_WIDTH A positive number; a value of
-1 indicates no tab expansion

8

TOTALVIEW_ROOT_PATH The location of the TotalView
installation directory; this is a
read-only variable and can-
not be set

TOTALVIEW_TCLLIB_PATH Any valid directory or direc-
tory path; to include the cur-
rent setting, use
$TOTALVIEW_TCLLIB_PATH

The directory
containing the
CLI Tcl libraries

TOTALVIEW_VERSION This is a read-only value and
cannot be set

VERBOSE INFO, WARNING, ERROR,
and SILENT

INFO

TABLE 2: Defaults and Permitted Values for CLI Variables (cont.)

Debugger Variable Permitted Values Default
84 Command Line Interface Guide Version 4.1

CLI Commands

dstatus
dstatus Shows current status of processes and threads
Format:

dstatus

Command alias:
st
ST

Description:
The dstatus command prints information about the current state of each
process and thread in the current focus. The ST command is an alias for
dfocus g dstatus, and acts as a group-status command.

If you have not changed the focus, the default width is “process”. In this
case, dstatus shows the status for each thread in process 1. In contrast, if
you set the focus to g1.<, the CLI displays the status for every thread in the
group containing process 1.

The command completes as soon as the state data is accessed and
reported to the user.

Examples:
dstatus Displays the status of all threads in the current focus.

For example:

1.1: 16641.1 Stopped, PC=0x0fa56648
f a st Displays the status for all threads in all processes.

f p1 st Displays the status of the threads associated with pro-
cess 1. If the focus is at its default (d1.<), this is the
same as typing st.

ST Displays the status of all threads in the group contain-
ing the focus process. For example:

Threads in process 1:
1.1: 41.1 Stopped, PC=0x0fa56648
Threads in process 3:
3.1: 76.1 Stopped, PC=0x10001174, [mpi.c#37]
Threads in process 4:
4.1: 60.1 Stopped, PC=0x10001174, [mpi.c#37]
Threads in process 5:
5.1: 50.1 Stopped, PC=0x10001174, [mpi.c#37]
Threads in process 6:
6.1: 56.1 Stopped, PC=0x10001174, [mpi.c#37]
Version 4.1 Command Line Interface Guide 85

4
CLI Commands

dstep
dstep Steps lines, stepping into subfunctions
Format:

dstep [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of source lines to be executed.

Command alias:
s
S

Description:
The dstep command executes source lines; that is, it advances the program
by steps (source lines). If a statement in a source line invokes a subfunction,
dstep steps into the function.

The S command is an alias for dfocus g dstep, and acts as a group-step
command.

The optional num-steps argument tells the CLI how many dstep operations it
should perform. If you do not specify num-steps, the default is 1.

The dstep command iterates over the arenas in the focus set by doing a
thread-level, process-level, or group-level step in each arena, depending on
the width of the arena. The default width is process (p).

If the width is process, the dstep command affects the entire process con-
taining the thread to be stepped. Thus, while only one thread is stepped for-
ward, all other threads contained in the same process will also resume. In
contrast, the dfocus t dstep command tells the CLI that it should just step
the thread of interest.

NOTE On systems having an identifiable manager thread, the “dfocus t dstep” com-
mand allows the manager thread to run as well as the thread of interest.

If a secondary thread hits a temporary breakpoint, the CLI steps over it and
operation is resumed until the thread of interest gets there.

Stepping behavior differs in threads, processes, and groups, as follows:

thread Only the thread of interest is allowed to run. (This is
not supported on all systems.)
86 Command Line Interface Guide Version 4.1

CLI Commands

dstep
process The entire process is allowed to run, and execution
continues until the thread of interest arrives at the
next statement. A temporary breakpoint is planted at
this location for the duration of the command. If
another thread reaches the goal breakpoint first, that
thread steps over it and the process is continued
again, until the thread of interest reaches the goal.

group The group is examined and each process that has a
thread stopped at the same location as the thread of
interest is identified (that is, it is a “matching” pro-
cess). One “matching” thread from each matching pro-
cess is selected. TotalView then runs all processes in
the group, and waits until the thread of interest arrives
at its goal location and also until each selected thread
arrives there. If some thread hits a different break-
point, the step ends.

For additional information on stepping, see Chapter 6 of the TOTALVIEW
USER’S GUIDE.

The dstep command alters program state by changing the state of the target
thread to running, after establishing an implicit breakpoint after the appro-
priate number of source lines. The state of all other threads in the affected
set is changed to running as well. Since no implicit breakpoint is established
for these threads, their state is subject to the normal changes caused by
execution. They may advance many source lines before their execution is
halted.

Examples:
dstep Executes the next source line, stepping into any proce-

dure call that is encountered. Only the current thread
is stepped.

s 15 Executes the next 15 source lines.

f p1.2 dstep Steps thread 2 in process 1 by one source line. This
also resumes execution of all other threads in process
1; they are halted as soon as thread 2 in process 1 exe-
cutes its statement.

f t1.2 s Steps thread 2 in process 1 by one source line. No
other threads in process 1 execute.
Version 4.1 Command Line Interface Guide 87

4
CLI Commands

dstepi
dstepi Steps machine instructions, stepping into subfunctions
Format:

dstepi [num-steps]

Arguments:
num-steps An integer number greater than 0, indicating the num-

ber of instructions to be executed.

Command alias:
si
SI

Description:
The dstepi command executes assembler instruction lines; that is, it
advances the program by steps (instructions). If the instruction invokes a
subfunction, dstepi steps into the function. The SI command is an alias for
dfocus g dstepi, and acts as a group-step command.

The optional num-steps argument tells the CLI how many dstepi operations
it should perform. If you do not specify num-steps, the default is 1.

For more information, see dstep on page 86.

Examples:
dstepi Executes the next machine instruction, stepping into

any procedure call that is encountered. Only the cur-
rent thread is stepped.

si 15 Executes the next 15 instructions.

f p1.2 dstepi Steps thread 2 in process 1 by one instruction. This
also resumes execution of all other threads in process
1; they are halted as soon as thread 2 in process 1 exe-
cutes its instruction.

f t1.2 si Steps thread 2 in process 1 by one instruction. No
other threads in process 1 execute.
88 Command Line Interface Guide Version 4.1

CLI Commands

dunset
dunset Restores default settings for state variables
Format:

Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all

Arguments:
debugger-var Name of the CLI state variable whose default setting is

being restored.

–all Restores the default settings of all CLI state variables.

Description:
The dunset command reverses the effects of any previous dstep com-
mands, restoring CLI state variables to their default settings.

NOTE Because user-defined variables have no default values, they are deleted.

Tcl variables (those created using the Tcl set command) are, of course, unaf-
fected by this command.

If you use the –all option, the dunset command affects all changed CLI state
variables, restoring them to the settings that existed when the CLI session
began. Similarly, specifying debugger-var tells the CLI to restore that one vari-
able.

Examples:
dunset PROMPT Restores the prompt string to its default setting; that

is, {[dfocus]> }.

dunset –all Restores all CLI state variables to their default settings.
Version 4.1 Command Line Interface Guide 89

4
CLI Commands

dup
dup Moves up the call stack
Format:

dup [num-levels]

Arguments:
num-levels Number of levels to move up. The default is 1.

Command alias:
u

Description:
The dup command moves the current stack frame up one or more levels. It
also prints the new frame number and function.

Call stack movements are all relative, so dup effectively “moves up” in the
call stack. (“Up” is in the direction of main().)

Frame 0 is the most recent—that is, currently executing—frame in the call
stack, frame 1 corresponds to the procedure that invoked the currently exe-
cuting one, and so on. The call stack’s depth is increased by one each time
a procedure is entered, and decreased by one when it is exited. The effect
of dup is to change the dynamic context—and hence the static scope of
symbols—of commands that follow. For example, moving up one level lets
you access variables that are local to the procedure that called the current
one.

Each dup command updates the frame location by adding the appropriate
number of levels.

The dup command also modifies the current list location to be the current
execution location for the new frame, so a subsequent dlist displays the
code surrounding this location. Entering dup 2 (while in frame 0) followed
by a dlist, for instance, displays source lines centered around the location
from which the current routine’s parent was invoked. These lines will be in
frame 2.
90 Command Line Interface Guide Version 4.1

CLI Commands

dup
Examples:
dup Moves up one level in the call stack. As a result, subse-

quent dlist commands refer to the procedure that
invoked this one. After this command executes, it dis-
plays information about the new frame. For example:

1 check_fortran_arrays_ PC=0x10001254,
FP=0x7fff2ed0 [arrays.F#48]

dfocus p1 u 5 Moves up five levels in the call stack for each thread
involved in process 1. If fewer than five levels exist, the
CLI moves up as far as it can.
Version 4.1 Command Line Interface Guide 91

4
CLI Commands

dwait
dwait Blocks command input until target processes stop
Format:

dwait

Description:
The dwait command tells the CLI to wait for all threads in the current focus
to stop or exit. Generally, this command treats the focus identically to other
CLI commands. However, because TotalView uses a synchronous stop
model, the affect of dfocus t dwait and dfocus p dwait are indistinguish-
able.

If you interrupt this command—typically by entering Ctrl-C—the CLI man-
ually stops all processes in the current focus before it returns.

Unlike most other CLI commands, this command blocks additional CLI
input until the blocking action is complete.

Examples:
dwait Blocks further command input until all processes in

the current focus have stopped (that is, none of their
threads are still running).

dfocus p1 p2 dwait
Blocks command input until processes 1 and 2 stop.
92 Command Line Interface Guide Version 4.1

CLI Commands

dwatch
dwatch Defines a watchpoint
Format:

Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–p | –g]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–p | –g]
[[–l lang] –e expr] [–t type]

Arguments:
variable A symbol name corresponding to a scalar or aggregate

identifier, an element of an aggregate, or a derefer-
enced pointer.

–address addr An absolute address in the file.

–length byte-count The number of bytes to watch. If a variable is named,
the number of bytes watched is the variable’s byte
length.

If you are watching a variable, you only need to specify
the amount of storage to watch if you want to override
the default value. (The default value is the variable’s
defined size.)

–p Tells TotalView to stop the process that hit this watch-
point.

–g Tells TotalView to stop all processes in the process’s
program group when the watchpoint is hit. (This is the
default.)

–l lang Specifies the language used when writing an expres-
sion. The values you can use for lang are c, c++, f7,
f9, and asm, for C, C++, FORTRAN 77, Fortran-9x,
and assembler, respectively. If you do not use a lan-
guage code, TotalView picks one based on the vari-
able's type. If only an address is used, TotalView
uses the C language.

Not all languages are supported on all systems.

–e expr When the watchpoint is triggered, evaluates expr in
the context of the thread that hit the watchpoint. In
Version 4.1 Command Line Interface Guide 93

4
CLI Commands

dwatch
most cases, you need to enclose the expression
within braces ({ }).

–t type The data type of $oldval/$newval in the expression.

Command alias:
wa

Description:
A dwatch command defines a watchpoint on a memory location where the
specified variables are stored. The watchpoint triggers whenever the value
of the variables changes.

NOTE Watchpoints are not available on Alpha Linux.

The watched variable can be a scalar, array, record, or structure object, or a
reference to a particular element in an array, record, or structure. It can also
be a dereferenced pointer variable.

The CLI lets you obtain a variable’s address in the following two ways if your
application demands that you specify a watchpoint with an address instead
of a variable name:

� dprint &variable

� dwhat variable

The dprint command displays an error message if the variable is within a
register.

NOTE In some cases, you will not be able to obtain an address from within the CLI.
If this occurs, you need to obtain it by using TotalView’s Graphic Interface. Chapter 8
of the TOTALVIEW USER’S GUIDE contains much additional information on watchpoints.

If you do not use the –length modifier, the CLI uses the length attribute from
the program’s symbol table. This means that the watchpoint applies to the
data object named; that is, specifying the name of an array lets you watch
all elements of the array. Alternatively, you can specify that a certain number
of bytes be watched, starting at the named location.

NOTE In all cases, the CLI watches addresses. If you specify a variable as the target
of a watchpoint, the CLI resolves the variable to an absolute address. If you are watch-
ing a local stack variable, the position being watched is just where the variable hap-
pened to be when space for the variable was allocated.
94 Command Line Interface Guide Version 4.1

CLI Commands

dwatch
The target focus establishes the processes (not individual threads) for which
the watchpoint is in effect.

The CLI prints a message showing the action point identifier, the location
being watched, the current execution location of the triggering thread, and
the identifier of the triggering threads.

One possibly confusing aspect of using expressions is that their syntax dif-
fers from that of Tcl. This is because you will need to embed code written in
Fortran, C, or assembler within Tcl commands. In addition, your expressions
will often include TotalView intrinsic functions.

Examples:
For these examples, assume that the current process set at the time of the
dwatch command consists only of process 2, and that p is a global variable
that is a pointer.

dwatch *p Watches the address stored in the pointer p at the time
the watchpoint is defined, for changes made by pro-
cess 2. Only process 2 is stopped. Note that the
watchpoint location does not change when the value
of p changes.

dwatch { * p } Performs the same action as the previous example.
Because the argument to dwatch contains a space, Tcl
requires that you place the argument within braces.

dfocus {p2 p3} wa *p
Watches the address pointed to by p in processes 2
and 3. Because this example does not contain either a
–p or –g option, the value of the STOP_ALL state vari-
able lets the CLI know if it should stop processes or
groups.

dfocus {p2 p3 p4} dwatch –p *p
Watches the address pointed to by p in processes 2, 3,
and 4. The –p option indicates that only the process
triggering the watchpoint is stopped.

wa * aString –length 30 –e { goto $447 }
Watches 30 bytes of data beginning at the location
pointed to by aString. If any of these bytes change,
execution control transfers to line 447.
Version 4.1 Command Line Interface Guide 95

4
CLI Commands

dwhat
dwhat Determines what a name refers to
Format:

dwhat symbol-name

Arguments:
symbol-name Fully or partially qualified name specifying a variable,

procedure, or other source code symbol.

Command alias:
wh

Description:
The dwhat command tells the CLI to display information about a named
entity within a program. The displayed information contains the name of the
entity and a description of the name. The examples that follow show many
of the kinds of elements that this command can display.

NOTE To view information on CLI state variables or user-defined commands, you
need to use the dset or alias commands.

The target focus constrains the query to a particular context.

The default width for this command is thread (t).

Examples:
dprint timeout timeout = {

tv_sec = 0xc0089540 (-1073179328)
tv_usec = 0x000003ff (1023)

}

dwhat timeout In thread 1.1:
Name: timeout; Type: struct timeval; Size: 8 bytes;
Addr: 0x11fffefc0

Scope: #fork_loop.cxx#snore \
(Scope class: Any)

Address class: auto_var (Local variable)

wh timeval In process 1:
Type name: struct timeval; Size: 8 bytes; \

Category: Structure
Fields in type:
{
tv_sec time_t (32 bits)
tv_usec int (32 bits)
}

96 Command Line Interface Guide Version 4.1

CLI Commands

dwhat
dlist 20 float field3_float;
21 double field3_double;
22 en_check en1;
23
24 };
25
26 main ()
27 {
28 en_check vbl;
29 check_struct s_vbl;
30 >vbl = big;
31 s_vbl.field2_char = 3;
32 return (vbl + s_vbl.field2_char);
33 }

p vbl vbl = big (0)

wh vbl In thread 2.3:
Name: vbl; Type: enum en_check; \

Size: 4 bytes; Addr: Register 01
Scope: #check_structs.cxx#main \

(Scope class: Any)
Address class: register_var (Register variable)

wh en_check In process 2:
Type name: enum en_check; Size: 4 bytes; \

Category: Enumeration
Enumerated values:

big = 0
little = 1
fat = 2
thin = 3

p s_vbl s_vbl = {
field1_int = 0x800164dc (-2147392292)
field2_char = '\377' (0xff, or -1)
field2_chars = "\003"
<padding> = '\000' (0x00, or 0)
field3_int = 0xc0006140 (-1073716928)
field2_uchar = '\377' (0xff, or 255)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
Version 4.1 Command Line Interface Guide 97

4
CLI Commands

dwhat
field_sub = {
field1_int = 0xc0002980 (-1073731200)
<padding> = '\377' (0xff, or -1)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
field2_long = 0x0000000000000000 (0)

...
}

wh s_vbl In thread 2.3:
Name: s_vbl; Type: struct check_struct; Size: 80 \

bytes; Addr: 0x11ffff240
Scope: #check_structs.cxx#main \

(Scope class: Any)
Address class: auto_var (Local variable)

wh check_struct In process 2:
Type name: struct check_struct; Size: 80 bytes; \

Category: Structure
Fields in type:
{
field1_int int (32 bits)
field2_char char (8 bits)
field2_chars <string>[2] (16 bits)
<padding> <char> (8 bits)
field3_int int (32 bits)
field2_uchar unsigned char(8 bits)
<padding> <char>[3] (24 bits)
field_sub struct sub_struct (320 bits){

field1_int int (32 bits)
<padding> <char>[4] (32 bits)
field2_long long (64 bits)
field2_ulong unsigned long (64 bits)
field3_uint unsigned int (32 bits)
en1 enum en_check (32 bits)
field3_double double (64 bits)

}
...

}
98 Command Line Interface Guide Version 4.1

CLI Commands

dwhere
dwhere Displays the current execution location and call stack
Format:

Displays locations in the call stack

dwhere [num-levels] [–args]

Displays all locations in the call stack

dwhere –a [–args]

Arguments:
num-levels Restricts output to this number of levels of the call

stack.

–args Displays argument names and values in addition to
program location information. If you omit this option,
arguments are not shown.

–a Shows all levels of the call stack.

Command alias:
w

Description:
The dwhere command prints the current execution locations and the call
stacks—or sequence of procedure calls—which led to that point. Informa-
tion is shown for threads in the current focus, with the default being to show
information at the thread level.

Arguments control the amount of command output in two ways:

� The num-levels argument lets you control how many levels of the call
stacks are displayed, counting from the uppermost (most recent) level;
the –all option indicates that all levels should be shown.

� The –args option tells the CLI that it should also display procedure
argument names and values for each stack level.

A dwhere command with no arguments or options displays the call stacks
for all threads in the target set.

Output is generated for each thread in the target focus.

Examples:
dwhere Displays the call stacks for all threads in the current

focus.
Version 4.1 Command Line Interface Guide 99

1

4
CLI Commands

dwhere
dfocus 2.1 dwhere 1
Displays just the most recent level of the call stack cor-
responding to thread 1 in process 2. This shows just
the immediate execution location of a thread or
threads.

dfocus 2.1 dwhere –all
Displays the complete call stack for thread 1 in pro-
cess 2, regardless of how many levels it includes.

w 1 –args Displays the current execution locations (one level
only) of threads in the current focus together with the
names and values of any arguments that were passed
into the current procedures.

f p1.< w 5 Displays the most recent five levels of the call stacks
for all threads involved in process 1. If the depth of any
call stack is less than five levels, all of its levels are
shown.

This command is a slightly more complicated way of
saying f p1 w 5 because specifying a process width
tells dwhere to ignore the thread indicator.
00 Command Line Interface Guide Version 4.1

CLI Commands

exit
exit Terminates the debugging session
Format:

exit [–force]

Description:
The exit command terminates the CLI session.

After executing this command, the CLI asks if it is all right to exit. If you
answer yes, the CLI closes all TotalView processes. If you had entered the
CLI from the TotalView GUI, this window is also closed.

NOTE Enter Ctrl-D to exit from the CLI window without exiting from TotalView.

The –force option tells the CLI that it should close all TotalView processes
without asking permission.

Any processes and threads that were created by the CLI are destroyed. Any
processes that existed prior to the debugging session (that is, were attached
by the CLI as part of a dattach operation) are detached and left executing.

The exit operation cannot be halted by typing Ctrl-C; after it is invoked, the
CLI session is over.

The exit and quit commands are interchangeable; they both do exactly the
same thing.

Examples:
exit Exits from the CLI, leaving any “attached” processes

running (in the run-time environment).
Version 4.1 Command Line Interface Guide 101

1

4
CLI Commands

help
help Displays help information
Format:

help [topic]

Arguments:
topic The topic or command for which the CLI prints infor-

mation.

Command alias:
he

Description:
The help command prints information about the specified topic or com-
mand. If you do no use an argument, the CLI displays a list of the topics for
which help is available.

If more than one screen of data would be displayed, the CLI fills the screen
with data and then displays a more prompt. You can then type Enter to see
more data or type q to return to the CLI prompt.

You can use the capture command to place help information into a variable.

Examples:
help help Prints information describing the help command.
02 Command Line Interface Guide Version 4.1

CLI Commands

quit
quit Terminates the debugging session
Format:

quit [–force]

Description:
The quit command terminates the CLI session.

After executing this command, the CLI asks if it is all right to exit. If you
answer yes, the CLI closes all TotalView processes. If you had entered the
CLI from the TotalView GUI, this window is also closed.

NOTE Enter Ctrl-D to exit from the CLI window without exiting from TotalView.

The –force option tells the CLI that it should close all TotalView processes
without asking permission.

Any processes and threads that were created by the CLI are destroyed. Any
processes that existed prior to the debugging session (that is, were attached
by the CLI as part of a dattach operation) are detached and left executing
in the run-time environment.

The quit operation cannot be halted by typing Ctrl-C; after it is invoked, the
CLI session is over.

The quit and exit commands are interchangeable; they both do exactly the
same thing.

Examples:
quit Exit the CLI, leaving any “attached” processes running

(in the run-time environment).
Version 4.1 Command Line Interface Guide 103

1

4
CLI Commands

stty
stty Sets terminal properties
Format:

stty [stty-args]

Arguments:
stty-args One or more UNIX stty command arguments as

defined in the man page for your operating system.

Description:
The CLI stty command executes a UNIX stty command on the tty associated
with the CLI window. This lets you set all of your terminal’s properties. How-
ever, this is most often used to set erase and kill characters.

If you start the CLI from a terminal using the totalviewcli command, the stty
command alters this terminal’s environment. Consequently, the changes
you make using this command are retained within the terminal after you
exit.

If you omit stty-args, the CLI displays information describing your current
settings.

The output from this command is returned as a string.

Examples:
stty Prints information about your terminal settings. The

information printed is the same as if you had typed
stty while interacting with a shell.

stty –a Prints information about all of your terminal settings.

stty erase ^H Sets the erase key to Backspace.

stty sane Resets the terminal’s settings to values that the shell
thinks they should be. If you are having problems with
command line editing, use this command. (The sane
option is not available in all environments.)
04 Command Line Interface Guide Version 4.1

CLI Commands

unalias
unalias Removes previously defined command
Format:

Removes an alias

unalias alias-name

Removes all aliases

unalias –all

Arguments:
alias-name The name of the alias being deleted.

–all Tells the CLI to remove all aliases.

Description:
The unalias command removes a previously defined alias. You can delete all
aliases by using the –all option. Aliases defined in your tvdinit.tvd file are
also deleted.

Examples:
unalias step2 Remove the step2 alias. step2 is now undefined and

can no longer be used. If step2 was included as part of
the definition of another command, that command will
no longer work correctly. However, the CLI will only dis-
play an error message when you try to execute the alias
that contains this removed alias.

unalias –all Removes all aliases.
Version 4.1 Command Line Interface Guide 105

1

4
CLI Commands

unalias
06 Command Line Interface Guide Version 4.1

Version 4.1
Appendix A
CLI Command Summary
This appendix contains a summary of all CLI commands. If a command has an
alias, it is displayed in parentheses after the command’s name.

alias
Creates a new user-defined command

alias alias-name defn-body

Views previously defined commands

alias [alias-name]

capture
Assigns a command’s output to a variable

capture command

dactions (ac)
Displays a list of action points

dactions [ap-id-list] [–at source-loc]
[–enabled | –disabled]

dassign (as)
Changes the value of a scalar variable

dassign target value

dattach (at)
Brings executing processes under CLI control

dattach [-g gid] [-r hname] fname pid-list
Command Line Interface Guide 107

1

A
CLI Commands

dbreak (b)
dbreak (b)
Creates a breakpoint at a source location

dbreak source-loc [–p | –g] [–l lang –e expr]

Creates a breakpoint at an address

dbreak –address addr [–p | –g] [–l lang –e expr]

dcont (co, CO)
Resumes execution and waits for the target process to start

dcont [–waitany]

ddelete (de)
Deletes the listed action points

 ddelete action-point-list

Deletes all action points

ddelete –a

ddetach (det)
Detaches from the processes in the current focus

ddetach

ddisable (di)
Disables specific action points

ddisable action-point-list

Disables all action points

ddisable –a

ddown (d)
Moves down the call stack

ddown [num-levels]

denable (en)
Reenables specific action points

denable action-point-list

Reenables all disabled action points in the current focus

denable –a
08 Command Line Interface Guide Version 4.1

CLI Commands

dnext (n, N)
dfocus (f)
Changes the target of CLI commands to this P/T set

dfocus p/t-set

Executes a command within this P/T Set

dfocus p/t-set command

dgo (g, G)
Resumes execution of target processes

dgo

dhalt (h, H)
Suspends execution of target processes

dhalt

dkill (k)
Terminates execution of target processes

dkill

dlist (l)
Displays code relative to a named location

dlist [–n num-lines]

Displays code relative to a named location

dlist source-loc [–n num-lines]

Displays code relative to the current execution location

dlist –e [–n num-lines]

dload (lo)
Loads debugging information

dload [-g gid] [-r hname] [-e] executable

dnext (n, N)
Steps one line, stepping over subroutines

dnext [num-steps]
Version 4.1 Command Line Interface Guide 109

1

A
CLI Commands

dnexti (ni, NI)
dnexti (ni, NI)
Steps one machine instruction, stepping over subroutines

dnexti [num-steps]

dprint (p)
Prints the value of a variable

dprint variable

Prints the value of an expression

dprint expression

drerun (rr)
Restarts processes

drerun [args]

drun (r)
Starts or restarts processes

drun [cmd_arguments] [> outfile] [< infile]

dset
Changes a CLI state variable

dset debugger-var value

Views current CLI state variable(s)

dset [debugger-var]

dstatus (st, ST)
Shows current status of processes and threads

dstatus

dstep (s, S)
Steps lines, stepping into subfunctions

dstep [num-steps]

dstepi (si, SI)
Steps machine instructions, stepping into subfunctions

dstepi [num-steps]
10 Command Line Interface Guide Version 4.1

CLI Commands

exit
dunset
Restores one CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values

dunset –all

dup (u)
Moves up the call stack

dup [num-levels]

dwait
Blocks command input until the target processes stop

dwait [–waitany]

dwatch (wa)
Defines a watchpoint for a variable

dwatch variable [–length byte-count] [–p | –g]
[[–l lang] –e expr] [–t type]

Defines a watchpoint for an address

dwatch –address addr –length byte-count [–p | –g]
[[–l lang] –e expr] [–t type]

dwhat (wh)
Determines what a name refers to

dwhat symbol-name

dwhere (w)
Displays locations in the call stack

dwhere [num-levels] [–args]

Displays all locations in the call stack

dwhere –a [–args]

exit
Terminates the debugging session

exit [–force]
Version 4.1 Command Line Interface Guide 111

1

A
CLI Commands

help (he)
help (he)
Displays help information

help [topic]

quit
Terminates the debugging session

quit [–force]

stty
Sets terminal properties

stty [stty-args]

unalias
Removes an alias

unalias alias-name

Removes all aliases

unalias –all
12 Command Line Interface Guide Version 4.1

Version 4.1
Appendix B
CLI Command Aliases and Focus
This appendix lists all CLI command aliases and their default focus. The pre-
defined uppercase alias for group-level commands is also indicated

Command Alias Default focus

alias — —

capture — —

dactions ac process

dassign as thread; if the current width is “process”,
dassign acts on each thread in the pro-
cess

dattach at —

dbreak b Obtains focus from the setting of the
SHARE_ACTION_POINT variable

true: default to “group”

false: default to “process”

dcont co, CO process

ddelete de process

ddetach det —

ddisable di process

ddown d thread; if the current width is “process”,
ddown acts on each thread in the process

denable en process

dfocus f —
Command Line Interface Guide 113

1

B
CLI Command Aliases and Focus
dgo g, G process

dhalt h, H process

dkill k process; note that killing the primary pro-
cess for a group always kills all of its slaves

dlist l thread; if the current width is “process”,
dlist iterates over all threads in the pro-
cess

dload lo —

dnext n, N process

When set to other width, actions are as fol-
lows:

thread: step just the thread

process: step thread while running pro-
cess

group: step one thread from each group
member while runing all threads in the
group

dnexti ni, NI process

For other widths, see dnext

dprint p thread; if the current width is “process”,
dprint acts on each thread in the process

drerun rr process

drun r process

dset — —

dstatus st, ST thread

dstep s, S process

For other widths, see dnext

Command Alias Default focus
14 Command Line Interface Guide Version 4.1

CLI Command Aliases and Focus
dstepi si, SI process

For other widths, see dnext

dunset — —

dup u thread; if the current width is “process”,
dup acts on each thread in the process

dwait — process

dwatch wa Obtains focus from the setting of the
SHARE_ACTION_POINT variable

true: default to “group”

false: default to “process”

dwhat wh thread; if the current width is “process”,
dwhat acts on each thread in the process

dwhere w thread; if the current width is “process”,
dwhere acts on each thread in the pro-
cess

exit — —

help he —

quit — —

stty — —

unalias — —

Command Alias Default focus
Version 4.1 Command Line Interface Guide 115

1

B
CLI Command Aliases and Focus
16 Command Line Interface Guide Version 4.1

Glossary
ACTION POINT: A debugger feature that allows a user to request that program
execution stop under certain conditions. Action points include breakpoints,
watchpoints, evaluation points, and barriers.

ACTION POINT IDENTIFIER: A unique integer ID associated with an action
point.

ADDRESS SPACE: A region of memory that contains code and data from a pro-
gram. One or more threads can run in an address space. A process normally
contains an address space.

AFFECTED P/T SET: The set of threads that will be affected by the command.
For most commands, this is identical to the target p/t set, but in some cases
it may include additional threads.

AGGREGATED OUTPUT: The CLI compresses output from multiple threads
when they would be identical except for the p/t identifier.

ARENA: A specifier that indicates the processes, threads, and groups upon
which a command executes. Arena specifiers are p (process), t (thread), g
(group), d (default), and a (all).

AUTOMATIC PROCESS ACQUISITION: TotalView automatically detects the
many processes that parallel and distributed programs run in, and attaches
to them automatically so you do not have to attach to them manually. This
process is called automatic process acquisition. If the process is on a remote
machine, automatic process acquisition automatically starts the TotalView
debugger server (the tvdsvr).
Version 4.1 Command Line Interface Guide 117

1

Glossary

barrier
BARRIER: An action point specifying that processes reaching a particular loca-
tion in the source code should stop and wait for other processes to catch
up.

BREAKPOINT: A point in a program where execution can be suspended to per-
mit examination and manipulation of data.

CALL STACK: A higher-level view of stack memory, interpreted in terms of
source program variables and locations.

CHILD PROCESS: A process created by another process (see parent process)
when that other process calls fork().

CLUSTER DEBUGGING: The action of debugging a program that is running on
a cluster of hosts in a network. Typically, the hosts are homogeneous.

COMMAND HISTORY LIST: A debugger-maintained list storing copies of the
most recent commands issued by the user.

CONTEXTUALLY QUALIFIED (SYMBOL): A symbol that is described in terms of
its dynamic context, rather than its static scope. This includes process iden-
tifier, thread identifier, frame number, and variable or subprocedure name.

CORE FILE: A file containing the contents of memory and a list of thread regis-
ters. The operating system dumps (creates) a core file whenever a program
exits because of a severe error (such as an attempt to store into an invalid
address).

CORE-FILE DEBUGGING: A debugging session that examines a core file image.
Commands that modify program state are not permitted in this mode.

CROSS-DEBUGGING: A special case of remote debugging where the host plat-
form and the target platform are different types of machines.

CURRENT FRAME: The current portion of stack memory, in the sense that it
contains information about the subprocedure invocation that is currently
executing.

CURRENT LANGUAGE: The source code language used by the file containing
the current source location.
18 Command Line Interface Guide Version 4.1

Glossary

dive stack
CURRENT LIST LOCATION: The location governing what source code will be
displayed in response to a list command.

DATA-SET: A set of array elements generated by TotalView and sent to the Visu-
alizer. (See visualizer process.)

DBELOG LIBRARY: A library of routines for creating event points and generat-
ing event logs from within TotalView. To use event points, you must link your
program with both the dbelog and elog libraries.

DBFORK LIBRARY: A library of special versions of the fork() and execve() calls
used by the TotalView debugger to debug multiprocess programs. If you link
your program with TotalView’s dbfork library, TotalView will be able to auto-
matically attach to newly spawned processes.

DEBUGGING INFORMATION: Information relating an executable to the source
code from which it was generated.

DEBUGGER INITIALIZATION FILE: An optional file establishing initial settings
for debugger state variables, user-defined commands, and any commands
that should be executed whenever TotalView or the CLI is invoked. Must be
called .tvdrc.

DEBUGGER PROMPT: A string printed by the CLI that indicates that it is ready
to receive another user command.

DEBUGGER SERVER: See tvdsvr process.

DEBUGGER STATE: Information that TotalView or the CLI maintains in order to
interpret and respond to user commands. Includes debugger modes, user-
defined commands, and debugger variables.

DISTRIBUTED DEBUGGING: The action of debugging a program that is running
on more than one host in a network. The hosts can be homogeneous or het-
erogeneous. For example, programs written with message-passing libraries
such as Parallel Virtual Machine (PVM) or Parallel Macros (PARMACS) run on
more than one host.

DIVE STACK: A series of nested dives that were performed in the same variable
window. The number of greater than symbols (>) in the upper left-hand cor-
ner of a variable window indicates the number of nested dives on the dive
Version 4.1 Command Line Interface Guide 119

1

Glossary

diving
stack. Each time that you undive, TotalView pops a dive from the dive stack
and decrements the number of greater than symbols shown in the variable
window.

DIVING: The action of displaying more information about an item. For example,
if you dive into a variable in TotalView, a window appears with more informa-
tion about the variable.

EDITING CURSOR: A black rectangle that appears when a TotalView GUI field is
selected for editing. You use field editor commands to move the editing cur-
sor.

EVALUATION POINT: A point in the program where TotalView evaluates a code
fragment without stopping the execution of the program.

EVENT LOG: A file containing a record of events for each process in a program.

EVENT POINT: A point in the program where TotalView writes an event to the
event log for later analysis using TimeScan.

EXECUTABLE: A compiled and linked version of source files, containing a
“main” entry point.

EXPRESSION: An expression consists of symbols (possibly qualified), con-
stants, and operators, arranged in the syntax of the current source lan-
guage. Not all Fortran 90, C, and C++ operators are supported.

EXTENT: The number of elements in the dimension of an array. For example, a
Fortran array of integer(7,8) has an extent of 7 in one dimension (7 rows) and
an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: A basic text editor that is part of TotalView’s interface. The field
editor supports a subset of GNU Emacs commands.

FOCUS: The set of groups, processes, and threads upon which a CLI command
acts. The current focus is indicated in the CLI prompt (if you are using the
default prompt).

FRAME: An area in stack memory containing the information corresponding to
a single invocation of a subprocedure.
20 Command Line Interface Guide Version 4.1

Glossary

mutex
FULLY QUALIFIED (SYMBOL): A symbol is fully qualified when each level of
source code organization is included. For variables, those levels are execut-
able or library, file, procedure or line number, and variable name.

GRIDGET: A dotted grid in the tag field that indicates you can set an action
point on the instruction.

GROUP: When TotalView starts processes, it places related processes in fami-
lies. These families are called “groups.”

HOST MACHINE: The machine on which the TotalView debugger is running.

INITIAL PROCESS: The process created as part of a load operation, or that
already existed in the run-time environment and was attached by TotalView
or the CLI.

LVALUE: A symbol name or expression suitable for use on the left-hand side of
an assignment statement in the corresponding source language. That is, the
expression must be appropriate as the target of an assignment.

LHS EXPRESSION: This is a synonym for lvalue.

LOWER BOUND: The first element in the dimension of an array or the slice of
an array. By default, the lower bound of an array is 0 in C and 1 in Fortran,
but the lower bound can be any number, including negative numbers.

MACHINE STATE: Convention for describing the changes in memory, registers,
and other machine elements as execution proceeds.

MESSAGE QUEUE: A list of messages sent and received by message-passing
programs.

MPICH: MPI/Chameleon (Message Passing Interface/Chameleon) is a freely
available and portable MPI implementation. MPICH was written as a collab-
oration between Argonne National Lab and Mississippi State University. For
more information, see www.mcs.anl.gov/mpi.

MPMD (MULTIPLE PROGRAM MULTIPLE DATA) PROGRAMS: A program in-
volving multiple executables, executed by multiple threads and processes.

MUTEX: Mutual exclusion. A collection of techniques for sharing resources so
that different uses do not conflict and cause unwanted interactions.
Version 4.1 Command Line Interface Guide 121

1

Glossary

native debugging
NATIVE DEBUGGING: The action of debugging a program that is running on the
same machine as TotalView.

NESTED DIVE WINDOW: A TotalView window that results from diving into an
item in a variable window. A nested dive window replaces the contents of
the variable window and has an undive symbol in its title bar. Diving on the
undive symbol returns the original contents of the variable window.

OUT OF SCOPE: When symbol lookup is performed for a particular symbol
name and it is not found in the current scope or any containing scopes, the
symbol is said to be out of scope.

PARALLEL PROGRAM: A program whose execution involves multiple threads
and processes.

PARCEL: The number of bytes required to hold the shortest instruction for the
target architecture.

PARENT PROCESS: A process that calls fork() to spawn other processes (usu-
ally called child processes).

PARMACS LIBRARY: A message-passing library for creating distributed pro-
grams that was developed by the German National Research Centre for
Computer Science.

PARTIALLY QUALIFIED (SYMBOL): A symbol name that includes only some of
the levels of source code organization (for example, filename and proce-
dure, but not executable). This is permitted as long as the resulting name
can be associated unambiguously with a single entity.

PC: This is an abbreviation for Program Counter.

PROCESS: An executable that is loaded into memory and is running (or capable
of running).

PROCESS GROUP: A group of processes associated with a multiprocess pro-
gram. A process group includes program groups and share groups.

PROCESS/THREAD IDENTIFIER: A unique integer ID associated with a particu-
lar process and thread.
22 Command Line Interface Guide Version 4.1

Glossary

serial line debugging
PROGRAM EVENT: A program occurrence that is being monitored by TotalView
or the CLI, such as a breakpoint.

PROGRAM GROUP: A group of processes that includes the parent process and
all related processes. A program group includes children that were forked
(processes that share the same source code as the parent) and children that
were forked with a subsequent call to execve() (processes that do not share
the same source code as the parent). Contrast with share group.

PROGRAM STATE: A higher-level view of the machine state, where addresses,
instructions, registers, and such are interpreted in terms of source program
variables and statements.

P/T (PROCESS/THREAD) SET: The set of threads drawn from all threads in all
processes of the target program.

PVM LIBRARY: Parallel Virtual Machine library. A message-passing library for
creating distributed programs that was developed by the Oak Ridge
National Laboratory and the University of Tennessee.

RVALUE: An expression suitable for inclusion on the right-hand side of an
assignment statement in the corresponding source language. In other
words, an expression that evaluates to a value or collection of values.

REMOTE DEBUGGING: The action of debugging a program that is running on a
different machine than TotalView. The machine on which the program is run-
ning can be located many miles away from the machine on which TotalView
is running.

RESUME COMMANDS: Commands that cause execution to restart from a
stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: This is a synonym for rvalue.

RUNNING STATE: The state of a thread when it is executing, or at least when
the CLI or TotalView has passed a request to the underlying run-time system
that the thread be allowed to execute.

SERIAL LINE DEBUGGING: A form of remote debugging where TotalView and
the TotalView Debugger Server communicate over a serial line.
Version 4.1 Command Line Interface Guide 123

1

Glossary

share group
SHARE GROUP: A group of processes that includes the parent process and any
related processes that share the same source code as the parent. Contrast
with program group.

SHARED LIBRARY: A compiled and linked set of source files that are dynami-
cally loaded by other executables—and have no “main” entry point.

SIGNALS: Messages informing processes of asynchronous events, such as seri-
ous errors. The action the process takes in response to the signal depends
on the type of signal and whether or not the program includes a signal han-
dler routine, a routine that traps certain signals and determines appropriate
actions to be taken by the program.

SINGLE STEP: The action of executing a single statement and stopping (as if at
a breakpoint).

SLICE: A subsection of an array, which is expressed in terms of a lower bound,
upper bound, and stride. Displaying a slice of an array can be useful when
working with very large arrays, which is often the case in Fortran programs.

SOURCE FILE: Program file containing source language statements. TotalView
allows you to debug FORTRAN 77, Fortran 90, Fortran 95, C, C++, and
assembler.

SOURCE LOCATION: For each thread, the source code line it will execute next.
This is a static location, indicating the file and line number; it does not, how-
ever, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: The process created by a user process executing under
debugger control.

SPMD (SINGLE PROGRAM MULTIPLE DATA) PROGRAMS: A program involv-
ing just one executable, executed by multiple threads and processes.

STACK: A portion of computer memory and registers used to hold information
temporarily. The stack consists of a linked list of stack frames that holds
return locations for called routines, routine arguments, local variables, and
saved registers.

STACK FRAME: A section of the stack that contains the local variables, argu-
ments, contents of the registers used by an individual routine, a frame
24 Command Line Interface Guide Version 4.1

Glossary

symbol
pointer pointing to the previous stack frame, and the value of the Program
Counter (PC) at the time the routine was called.

STACK POINTER: A pointer to the area of memory where subprocedure argu-
ments, return addresses, and similar information is stored.

STACK TRACE: A sequential list of each currently active routine called by a pro-
gram and the frame pointer pointing to its stack frame.

STATIC (SYMBOL) SCOPE: A region of a program's source code that has a set
of symbols associated with it. A scope can be nested inside another scope.

STEPPING: Advancing program execution by fixed increments, such as by
source code statements.

STOP SET: A set of threads that should be stopped once an action point has
been triggered.

STOPPED/HELD STATE: The state of a process whose execution has paused in
such a way that another program event (for example, arrival of other threads
at the same barrier) will be required before it is capable of continuing exe-
cution.

STOPPED/RUNNABLE STATE: The state of a process whose execution has
been paused (for example, when a breakpoint triggered or due to some user
command) but can continue executing as soon as a resume command is
issued.

STOPPED STATE: The state of a process that is no longer executing, but will
eventually execute again. This is subdivided into stopped/runnable and
stopped/held.

STRIDE: The interval between array elements in a slice and the order in which
the elements are displayed. If the stride is 1, every element between the
lower bound and upper bound of the slice is displayed. If the stride is 2,
every other element is displayed. If the stride is –1, every element between
the upper bound and lower bound (reverse order) is displayed.

SYMBOL: Entities within program state, machine state, or debugger state.
Version 4.1 Command Line Interface Guide 125

1

Glossary

symbol lookup
SYMBOL LOOKUP: Process whereby TotalView consults its debugging informa-
tion to discover what entity a symbol name refers to. Search starts with a
particular static scope and occurs recursively, so that containing scopes are
searched in an outward progression.

SYMBOL NAME: The name associated with a symbol known to TotalView (for
example, function, variable, data type, and such).

SYMBOL TABLE: A table of symbolic names (such as variables or functions)
used in a program and their memory locations. The symbol table is part of
the executable object generated by the compiler (with the –g switch) and is
used by debuggers to analyze the program.

TAG FIELD: The left margin in the source code pane of the TotalView process
window containing boxed line numbers marking the lines of source code
that actually generate executable code.

TARGET MACHINE: The machine on which the process to be debugged is run-
ning.

TARGET PROCESS SET: The target set for those occasions when operations
may only be applied to entire processes, not to individual threads within a
process.

TARGET PROGRAM: The executing program that is the target of debugger oper-
ations.

TARGET P/T SET: The set of processes and threads upon which a CLI com-
mand will act.

THREAD: An execution context that normally contains a set of private registers
and a region of memory reserved for an execution stack. A thread runs in an
address space.

THREAD EXECUTION STATE: The convention of describing the operations
available for a thread, and the effects of the operation, in terms of a set of
pre-defined states.

THREAD OF INTEREST: The primary thread that will be affected by a com-
mand.
26 Command Line Interface Guide Version 4.1

Glossary

watchpoint
TRIGGER SET: The set of threads that may trigger an action point (that is, for
which the action point was defined).

TRIGGERS: The effect during execution when program operations cause an
event to occur (such as, arriving at a breakpoint).

TVDSVR PROCESS: The TotalView Debugger Server process, which facilitates
remote debugging by running on the same machine as the executable and
communicating with TotalView over a TCP/IP port or serial line.

UNDIVING: The action of displaying the previous contents of a window, instead
of the contents displayed for the current dive. To undive, you dive on the
undive icon in the upper right-hand corner of the window.

UPPER BOUND: The last element in the dimension of an array or the slice of an
array.

USER INTERRUPT KEY: A keystroke used to interrupt commands, most com-
monly defined as ^C (Ctrl-C).

VARIABLE WINDOW: A TotalView window displaying the name, address, data
type, and value of a particular variable.

VISUALIZER PROCESS: A process that works with TotalView in a separate win-
dow, allowing you to see a graphical representation of program array data.

WATCHPOINT: An action point specifying that execution should stop whenever
the value of a particular variable is updated.
Version 4.1 Command Line Interface Guide 127

1

Glossary

watchpoint
28 Command Line Interface Guide Version 4.1

Index
Symbols
separator character 24
$newval variable in watchpoints

94
$oldval variable in watchpoints 94
.tvdrc file 15
< first thread indicator 28
= symbol for PC of current buried

stack frame 67
> symbol for PC 67
@ symbol for action point 67

A
-a switch 22
abbreviating commands 21
ac, see dactions command
action point identifiers 35, 43, 60

never reused in a session 35
action points 35

default for newly created 81
deleting 55
disabling 57
displaying 43
reenabling 60

actions, see dactions
adding debugger information 11
advancing and holding processes

33

advancing by steps 86
advancing program execution 33
alias command 40
aliases

built-in 21
commands 28
default 40
group 21
group, limitations 21
removing 105

all process specifier 29
ambiguous scoping 25
architecture 82
arena specifiers 28

incomplete 30
inconsistent widths 31

arenas 61, 73
iterating over 28

ARGS variable 22, 78, 80
modifying 22

ARGS_DEFAULT variable 22, 78,
80

clearing 22
arguments

command line 78, 80
default 80
replacing 22

as, see dassign command

assembler instructions, stepping
88

assign, see dassign command
assigning output 20
assigning output to variable 20
assigning p/t set to variable 30
associating with currently execut-

ing program 19
at, see dattach command
attach, see dattach command

B
b, see dbreak command
barrier point, defined 35
BARRIER_STOP_ALL variable 80
barriers 80
block, specifying in scope 24
blocking command input 92
blocking execution 53
blocking input 92
break, see dbreak command
breakpoints

default file in which set 51
defined 35, 50
process and thread behavior

at 33
setting 8
Version 4.1 Command Line Interface Guide 129

Index

C

13
setting at beginning of proce-
dure 51

stopping all processes at 50
triggering 51

built-in alias 21
buried stack frame 66

C
C language escape characters 45
call stack 90

displaying 99
see also, stack frame

capture command 20, 42, 102
changing context 24
changing dynamic context 90
changing focus 61
changing frames 24
changing process thread set 27
changing program state 13
changing state 34
changing state variables 80
changing value of program vari-

able 45
clarifying scope with dwhat 25
CLI

.tvdrc initialization file 15
actions are sequential 13
and Tcl 1, 11, 12
as source level debugger 11
command results 13
components 11
defined 1
how it operates 11
initialization 15
initialization file 15
interface 13
invoking program from shell

example 16
not a library 12
output 19
-s switch 15
scoping interpretation 23
starting 14
starting from command

prompt 14
starting program using 17

using within Tcl, no differenc-
es 12

CLI commands
 20, 90
abbreviating 21
action points 39
alias 40
aliases 113
capture 20, 42, 102
dactions 43
dassign 45
dattach 19, 33, 47
dbreak 50
dcont 53
ddelete 55
ddetach 56
ddisable 57
ddown 24, 58
default focus 27, 28
denable 60
dfocus 61
dgo 31, 63
dhalt 64
dkill 18, 33, 65
dlist 66, 81
dload 17, 18, 33, 70
dload, returning process ID 20
dnext 72
dnexti 73
dprint 74
drerun 18, 77
drun 17, 22, 65, 78
drun, limitations 79
drun, reissuing 79
dset 22, 32, 80
dstatus 85
dstep 29, 31, 86
dstepi 88
dunset 22, 89
dup 24
dwait 92
dwatch 93
dwhat 25, 96
dwhere 31, 99
environment 37
execution control 39
exit 101

focus of 113
help 102
initialization 38
overview 37
program information 38
quit 103
stty 104
summary 107
termination 38
unalias 105

CLI variables, see state variables
closed loop, see closed loop
co, see dcont command
code, displaying 66
command aliases 28, 113
command arguments 22

clearing example 22
passing defaults 22
setting 22

command focus 113
command input, blocking 92
command line arguments 18, 78,

80
Command Line Interpreter, see

CLI
command output 42
command prompts 32

default 32
format 32
setting 32
starting the CLI from 14

command summary 107
commands

assigning output to variable
20

commands, interrupting 13
commands, user-defined 40
compiler adding debugging infor-

mation 11
compiler information, interpreting

23
completion rules for arena specifi-

ers 30
components of an executing pro-

gram 2
conditional watchpoints 93
cont, see dcont command
0 Command Line Interface Guide Version 4.1

Index

F

context, changing 24
continuous execution 13
control in parallel environments

33
control in serial environments 33
Control-C 13
controlling program execution 33
creating commands 40
creating new process objects 70
creating new processes 18
creating threads 63
ctrl-d to exit CLI 101, 103
current list location 58

D
d, see ddown command
dactions command 43
dassign command 45
datatype incompatibilities 45
dattach command 19, 33, 47
dbreak command 50
dcont command 53
ddelete command 55
ddetach command 56
ddisable command 57
ddown command 24, 58
de, see ddelete command
debugger

how it operates 11
separate from program 11

debugger initialization 15
debugger initialization file 15

see also initialization
debugging option 11
debugging session 33

ending 101
default aliases 40
default arguments 78, 80

modifying 79
default focus 61
default process/thread set 27
default value of variables, restor-

ing 89
default width specifiers 29
defining the current focus 81
delete, see ddelete command
deleting action points 55

deleting state variables 80
denable command 60
det, see ddetach command
dfocus command 61
dgo command 31, 63
dhalt command 64
di, see ddisable command
directory search paths 81
disable, see ddisable command
disabling action points 57
discarding buffered output 20
display call stack 99
displaying code 66
displaying current execution loca-

tion 99
displaying error message informa-

tion 82
displaying expressions 74
displaying help information 102
displaying information on a name

96
displaying values 74
dkill command 18, 33, 65
dlist command 66, 81
dload command 17, 18, 20, 33, 70
dnext command 72
dnexti command 73
down, see ddown command
dprint command 74
drerun command 18, 77
drun command 17, 22, 65, 78

limitations 79
reissuing 79

dset command 22, 32, 80
dstatus command 85
dstep command 29, 31, 86
dstepi command 88
dunset command 22, 89
dup command 24, 90
dwait command 92
dwatch command 93
dwhat command 25, 96

clarifying scope 25
dwhere command 31, 99

E
effects of parallelism on debugger

behavior 25
eliminating tab processing 67
en, see denable command
enable, see denable command
ending debugging session 101
error message information 82
ERROR state 82
escape characters 45
evaluating state 35
evaluation points

defined 35
see also dbreak
setting 8

examining state 34
executable, specifying name in

scope 24
EXECUTABLE_PATH variable 48,

67, 81
executing a start-up file 15
executing as one instruction 73
executing as one statement 72
executing assembler instructions

88
executing program, components

2
executing source lines 86
execution

controlling 33
halting 64

execution location, displaying 99
execution states 34
exit command 101
expression arguments 23
expression evaluation 23
expression values, printing 74

F
f, see dfocus command
file for start up 15
first thread indicator of < 28
focus

default 61
defining 81
pushing 27
restoring 27
Version 4.1 Command Line Interface Guide 131

Index

G

13
see also dfocus command
focus of commands 113
fork_loop.tvd example program

16
frames, changing 24

G
-g option 11
g, see dgo command
go, see dgo command
group aliases 21

limitations 21
group members, stopping 80
group members, stopping flag 82
group stepping 36
group stepping behavior 87
group width specifier 29
groups, defined 26
groups, placing processes in 48

H
h, see dhalt command
halt, see dhalt command
halting execution 64
help command 102
holding and advancing processes

33
how a debugger operates 11

I
I/O redirection 78
identify process within group 36
implicitly defined process/thread

set 27
incomplete arena specifier 30
inconsistent widths 31
infinite loop, see loop, infinite
INFO state 82
information on a name 96
initial process 25
initialization

.tvdrc file 15
initialization file 15, 105

typical contents 15
initialization search paths 15
initializing debugging state 15
initializing the CLI 15
input, blocking 92

instructions, stepping 88
interactive CLI 11
interface to CLI 13
interpreting compiler information

23
interrupting commands 13
invoking CLI program from shell

example 16
iterating over a list 31
iterating over arenas 28

K
k, see dkill command
kill, see dkill command

L
l, see dlist command
launching processes 78
levels, moving down 58
lines for listing 81
LINES_PER_SCREEN variable 21,

81
list location 58
list, see dlist command
lists with inconsistent widths 31
lists, iterating over 31
lo, see dload command
load, see dload command
loop, infinite, see infinite loop

M
machine instructions, stepping 88
make_actions.tcl sample macro 8,

16
manager threads, running 86
matching process 87
matching thread 87
MAX_LIST variable 66, 81
mixing arena specifiers 31
more processing 20, 74
more prompt 20, 81, 102
MPMD (Multiple Program Multiple

Data) 2
multiple executables 2
multiprocess program, attaching

to processes 48
multiprocess programs

process groups 26

N
n, see dnext command
name, information about 96
names of symbols 22
newval variable in watchpoints 94
next, see command
nexti, see dnexti command
ni, see dnexti command
non-sequential program execu-

tion 13

O
oldval variable in watchpoints 94
omitting components in creating

scope 25
omitting period in specifier 30
omitting tid 30
omitting width specifier 30
Open Command Line Window

command 14
output

assigning output to variable
20

discarding 20
only last command executed

returned 20
printing 19
returning 19
when not displayed 20

output from 19

P
p, see dprint command
p.t notation 28
P/T sets, see process/thread sets
parallel environments

execution control 33
parallel program, defined 25
parsing comments example 8
passing default arguments 22
pid specifier, omitting 30
print, see dprint command
printing expression values 74
printing information about cur-

rent state 85
printing variable values 74
2 Command Line Interface Guide Version 4.1

Index

S

procedure, specifying name in
scope 24

process numbers are unique 26
process objects, creating new 70
process width specifier 29

omitting 30
process/set threads

saving 30
process/thread identifier 26
process/thread notation 26
process/thread sets 27

as arguments 27
changing 61
changing focus 27
default 27
examples 29
implicitly defined 27
inconsistent widths 31
structure of 28
target 27
widths inconsistent 31

process_id.thread_id 29
processes

and threads 2
attaching to 47, 70
creating new 18
current status 85
destroyed when exiting CLI

101, 103
initial 25
matching 87
releasing control 56
restarting 77, 78
spawned 25
starting 78
stepping 36
stepping behavior 87
synchronizing 35
terminating 18, 65

program components 1
program execution

advancing 33
controlling 33

program groups, defined 26
program groups, placing process-

es in 48
program state

at barriers 53
changing 13

program stepping 86
program variable, changing value

45
programs, associating with 19
PROMPT variable 32, 81
prompting when screen is full 74
PTSET variable 81
pushing focus 27

Q
qualifying symbol names 24
quit command 103
quotation marks 45

R
r, see drun command
reenabling action points 60
releasing control 56
removing aliases 105
replacing default arguments 22
replacing tabs with spaces 82
rerun, see rerun command
restarting processes 77, 78
restarting program execution 18
restoring focus 27
restoring variables to default val-

ues 89
results of entering a CLI command

13
results, assigning output to vari-

ables 20
resuming execution 33, 51, 53, 63,

65
Root window, starting CLI from 14
rr, see drerun command
rules for scoping 24
run, see drun command
running state 34

S
-s switch to CLI 15
s, see dstep command
sample programs

make_actions.tcl 16
scope 23
scope of symbols 22

scoping as a tree 24
scoping rules 24
scoping, ambiguous 25
scoping, omitting components 25
screen size 81
scrolling output 20
search paths 81
search paths for initialization 15
separate semantics 11
sequential actions 13
set, see dset command
setting breakpoints 8
setting lines between more

prompts 81
setting terminal properties 104
share groups, defined 26
SHARE_ACTION_POINT variable

81
share_in_group flag 81
shared library, specifying name in

scope 24
shell, example of invoking CLI

program 16
showing current status 85
si, see dstepi command
SILENT state 82
source code, displaying 66
source display location 66
source file, specifying name in

scope 24
spawned process 25
SPMD (Single Program Multiple

Data) 2
st, see dstatus command
stack and processes 2
stack frame 66

moving down through 58
stack frame, see also call stack
stack movements 90
starting a process 78
starting program under CLI con-

trol 17
starting the CLI 14
start-up file 15

tvdinit.tvd 40
state variables

ARGS 22, 78, 80
Version 4.1 Command Line Interface Guide 133

Index

T

13
ARGS, modifying 22
ARGS_DEFAULT 22, 78, 80
ARGS_DEFAULT, clearing 22
BARRIER_STOP_ALL 80
changing 80
deleting 80
EXECUTABLE_PATH 48, 67,

81
LINES_PER_SCREEN 21, 81
MAX_LIST 66, 81
PROMPT 32, 81
PTSET 81
SHARE_ACTION_POINT 81
STOP_ALL 82, 95
TAB_WIDTH 67, 82
TOTAL_VERSION 82
TOTALVIEW_ROOT_PATH 82
VERBOSE 82
viewing 80

state, initializing 15
static scope 90
status, see dstatus command
step, see dstep command
stepi, see dstepi command
stepping 35
stepping a group 36
stepping a process 36
stepping a thread 36
stepping behavior 86
stepping machine instructions 73,

88
stepping the target program 33
stepping, see also dnext com-

mand, dnexti command,
dstep command, and dstepi
command

stop, defined in a multiprocess
environment 34

STOP_ALL variable 80, 82, 95
stop_group flag 82
stopped/held state 34
stopped/runnable state 34
stopping execution 64
stopping group members 80
stopping group members flag 82
stty command 104
symbol lookup 23

and context 23
symbol names 22

qualifying 24
specifying in scope 24

symbol scope 22
symbol specification, omitting

components 25
symbols as arguments 23
symbols, interpreting 45
symbols, static scope 90
synchronizing processes 35
synchronous stop model 92
system variables, see state vari-

ables

T
tab processing 67
TAB_WIDTH variable 67, 82
tabs, replacing with spaces 82
target process/thread set 27, 33
target processes 64

terminating 65
target program 1

defined 2
stepping 33

Tcl
and CLI 11, 12
and the CLI 1
books for learning 2
CLI and thread lists 12
interpreter 1
version based upon 12

temporary breakpoint 87
terminal properties, setting 104
terminating debugging session

101
terminating processes 18, 65
thread numbers are unique 26
thread of interest 28, 29
thread sets, see process/thread

sets
thread stepping behavior 86
thread width specifier 28

omitting 30
threads

and processes 2
creating 63

current status 85
matching 87
stepping 36

threads destroyed when exiting
CLI 101, 103

tid, omitting 30
TotalView

executable 82
scoping interpretation 23
starting the CLI within 14

totalview command 15
TOTALVIEW_ROOT_PATH vari-

able 82
TOTALVIEW_VERSION variable 82
totalviewcli command 15
triggering breakpoints 51
troubleshooting 4
tvdinit.tvd start-up file 40, 105

U
u, see dup command
unalias command 105
unconditional watchpoints 93
unique process numbers 26
unique thread numbers 26
unset, see dunset command
up, see dup command
user-defined commands 40
using quotation marks 45

V
value for newly created action

points 81
values, printing 74
variables

assigning command output to
42

assigning p/t set to 30
changing values 45
obtaining addresses of 94
printing 74
setting command output to

20
watched 94
watching 93

VERBOSE variable 82
viewing state variables 80
4 Command Line Interface Guide Version 4.1

Index

W

W
w, see dwhere command
wa, see dwatch command
wait, see dwait command
WARNING state 82
watch, see dwatch command

watchpoints 93
$newval 94
$oldval 94
conditional 93
defined 35
length of 94
supported systems 94

wh, see dwhat command
what, see dwhat command
where, see dwhere command
width specifier 28, 30

omitting 30
Version 4.1 Command Line Interface Guide 135

Index

W

13
6 Command Line Interface Guide Version 4.1

	TotalView Command Line Interpreter
	What Is the CLI
	Document Contents
	Conventions
	Reporting Problems

	A Few CLI/Tcl Macros
	Setting the EXECUTABLE_PATH State Variable
	Print an Array Slice
	Setting Breakpoints

	Using the CLI
	How a Debugger Operates
	Tcl and the CLI
	The CLI and TotalView
	The CLI Interface

	Starting the CLI
	Debugger Initialization
	Executing a Start-Up File
	Starting Your Program

	CLI Output
	“more” Processing

	Built-In Aliases and Group Aliases
	Command Arguments
	Symbols
	Symbol Names and Scope
	Qualifying Symbol Names

	Effects of Parallelism on TotalView and CLI Behavior
	Groups

	Process/Thread Sets and Arenas
	Specifying Processes and Threads
	Incomplete Arena Specifiers
	Lists With Inconsistent Widths
	Kinds of IDs

	Command and Prompt Formats
	Controlling Program Execution
	Advancing Program Execution
	Action Points

	Stepping

	CLI Commands
	Command Overview
	alias
	capture
	dactions
	dassign
	dattach
	dbreak
	dcont
	ddelete
	ddetach
	ddisable
	ddown
	denable
	dfocus
	dgo
	dhalt
	dkill
	dlist
	dload
	dnext
	dnexti
	dprint
	drerun
	drun
	dset
	dstatus
	dstep
	dstepi
	dunset
	dup
	dwait
	dwatch
	dwhat
	dwhere
	exit
	help
	quit
	stty
	unalias

	CLI Command Summary
	CLI Command Aliases and Focus
	Glossary

